
NASA CR-54836

TRW ER-6673A

FINAL REPORT

THREE-DIMENSIONAL ANALYSIS

OF

INDUCER FLUID FLOW

By

PAUL COOPER and HEINRICH B. BOSCH

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FEBRUARY I1, 1966

Contract NAS 3-2573

Technical Management

NASA Lewis Research Center

Cleveland, Ohio

Liquid Rocket Technology Branch

Werner R. Britsch

TRW AccEssOelesDIVISION
TRW INCt • 2355._ EUCLID AVENUE

CLEVELAND, r'lHIn 44117



_ r _



ABSTRACT
Analytical studies were conducted to provide means for improving

the design of inducers for high-speed, high-flow rocket engine pumps.

Exact and approximate methods are presented for obtaining three-

dimensional solutions to turbomachine flows with losses and vapori-

zation, and results are presented for two sample inducers. The exact

method solves four non-linear differential equations of motion simul-

taneously by finite-difference and relaxation techniques that employ

a "total residual 'r concept. Conclusions on inducer performance and

design are made on the basis of several approximate solutions of both

incompressible and two-phase flows, together with analysis of fluid

thermal and scale effects. Fortran IV listings of the analysis com-

puter programs are presented. _,_
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THREE-DIMENSIONALANALYSISOF INDUCER FLUID FLOW

By Paul Cooperand Heinrich B. Bosch
TRW Accessories Division

SUMMARY

This report presents the results of three-dimensional analytical studies of inducer
fluid flow performance. A system of equationsand boundary conditions is presented
for any general continuum flow. Specifically, two-phase flow and losses are contem-
plated, andwe employed a thermodynamic equilibrium model to describe these. The
bubbles in two-phase flow are assumedto be infinitesimal in size and infinitely many
in number, thus allowing continuumtreatment.

An exact methodwas employed for solving the resulting four simultaneous nonlinear
differential equations, boundary conditions andother relations by finite difference
methods. A relaxation process makes those corrections to an initial field such that
the "total residual" of the field is reduced sufficiently. Several solutions were ob-
tained; first, of simple problems havingknown answers, andfinally for two sample,
variable-lead helical inducers (6.2° and 12° inlet tip blade angles respectively) on
coarse grids. The validity of the method for both two-phase and liquid flows was
established empirically. Studies of these results indicate that more accurate solutions
can be obtainedwith finer grids.

An approximate method of solution was also developedto obtain rapid solutions for
analyzing the resulting inducer performance andfluid and scale effects. Curves of
average pressure-rise versus net positive suction head (NPSH)for the two sample
inducers were obtainedfor different values of the thermodynamic vaporization para-
meter implied by the model. These results appear to have some correlation with
existing theory on fluid effects or scaling, and they lead to conclusions on the character
of the flow at various values of NPSH. Studies of these theories and datahave indicated
the areas of designoptimization that canbe undertaken with the analysis methods pre-
sented. Empirical modifications to the equilibrium model of the programs would give
a more accurate description of the two-phase flow and losses. They would also account
for thermodynamic non-equilibrium effects to the extent that they are not distinguishable
in the test data employedfor suchmodifications. Fortran IV listings for both analysis
methods are included.





INTRODUCTION

Becauseof their ability to pump fluids under cavitating conditions, inducers are em-
ployed for pressurizing the inlets of high speed, high pressure rocket engine pumps.
To predict inducer performance and inlet pressurization requirements for various
fluids and speedsandto improve design methods, a precise knowledgeof the internal
flow is required. Incompressible, lossless, approximate analysis methods derived
from the work of Stanitz (reference 1) and Hamrick et al (reference 2) are available,
(references 3, 4, 5). However the typically two-phase flows with loss that occur in
inducers lead to loading distributions and overall performance that cannot be described
by an entirely single-phase isentropic flow analysis. Thus the design approachesfor
inducers generally ignore the blade-to-blade flow field effects andutilize blade element
methods with empirically distributed losses (reference 6); the overall sizes, speedsand
average velocities being determined as one-dimensional consequencesof basic suction
parameter requirements (reference 7).

The present program was instituted to obtain three-dimensional methods of analyzing
the inducer flow field and to apply the results to the improvement of designcriteria,
performance prediction and scaling laws in continuation of similar work performed
under a previous contract (reference 8).

Our main effort was directed to obtaining an exact three-dimensional method of
solution that would allow the inclusion and easy modification of two-phase and loss
effects. Of several approachesthat we investigated, the successful onewas the
simplest, obtaining solutions directly in terms of the pressure andthree velocity
components. At first we attemptedwhat appearedto be a simpler dual-stream-
function analysis of the relative flow field (using techniques similar to those of re-
ferences 9, 10, 11), but complexities in the iteration and the boundary conditions arose
(seeAppendix B). Starting with the vector momentum and continuity equations of
Section I and allowing for whatever state, energy and loss relations would be necessary
to describe the real fluid effects, we reduced the basic problem to one of solving four
scalar non-linear partial differential equations (SectionII. A. 1) throughout the relative
flow field, which includes the region within an inducer channel as well as the extensions
of this region upstream and downstream. We solve the four scalar equations together
with an equationof state by applying eachof them in finite-difference form to all points
of a general, non-orthogonal grid which we construct in the relative flow field.
(Appendix A developsthe transformations required to convert finite differences in this
grid to derivatives in the usual right-circular-cylindrical coordinate system used for
the equations.) The solution emerges by the application of corrections to assumed
values of the unknownsat eachpoint in cyclic fashion. These corrections are those which
reduce the "total residual", i.e., the sum of the squares of the residuals of each of the
four finite difference equationsat all points in the field.

Before obtaining inducer solutions by this method, we checkedit on two simpler problems
for lossless axial flow through a paddlewheel channel. The first problem was wheel
type flow, for which we obtained satisfactory solutions to both incompressible and two-
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phaseflow, using a barotropic vaporization relation for the latter. In the second
problem we verified our solution to incompressible, irrotational flow with the results
in Stanitz's three-dimensional potential-flow solution (reference 12). Both of these
simple problems revealed effects of grid point density andthe total number of unknowns
on the resultant accuracy and calculation times. Finally we obtained incompressible,
lossless solutions to the flows in two sample, variable-lead, radial-element-bladed
inducers having inlet tip blade angles of 6.2° and 12° respectively. While accuracy
was reasonable for the number of grid points used,our present understanding of the
problem indicates that finer grid mesheswill improve this accuracy.

Further iteration would normally be required to obtain completed solutions by altering
the positions of the initially assumedupstream and downstreamextensions of the
bladesuntil they are unloaded. Another solution of this type for the 12° inducer with
two-phase, lossless flow demonstrated that no additional complications or calculation
times are required for the inclusion of these real fluid effects.

In addition to the exact methodof three-dimensional solution, we introduced (SectionIII)
a more rapid, approximate method to assist in the investigations of design, performance,
and scaling parameters. This method assumesthe flow to be restricted to annuli bounded
by stream surfaces of revolution whoseupstream locations (in our case, at the blade
leading edge)are f£xed. Two-phase effects in an approximate blade-to-blade solution
are taken into accountusing the barotropic state relation. The solution is obtained by
adjusting the positions of the stream surfaces to achieve simple meridional equilibrium
along quasi-normals at several stations from inlet to outlet. We obtained solutions by
this method to the 6.2° and 12° sample inducers, and correlations with the results of the
exact method are presented. We obtained further solutions with loss and two-phase
flow, demonstrating the shifts of loading and velocity distributions that occur dueto
these effects, together with the deterioration in overall performance that occurs when
the net positive suction headis reduced (SectionIV). These theoretical runs also show
the changesin performance that occur with corresponding variations of the scaling or
fluid vaporization parameters, giving substanceto certain theories of thermodynamic
effects on performance first advancedby Stepanoff (references 13 and 14).

We have included Fortran IV digital computer programs (AppendixesC and D) for both
methodsof analysis, which are applicable to any shapesof inducer hub, shroud and
blades. The approximate method is best suited to rapid analysis of performance, or
for determining whether the geometry in question shouldbe analyzedby the longer,
exact program. Thus the results of this work are methods for obtaining reasonable ap-
proximations of actual inducer flows, giving overall pressure rise and efficiency and
radial distributions of average pressure and velocity at exit, as well as complete dis-
tributions of fluid density, pressure and velocity throughout the flow channel.



*1
LIST OF SYMBOLS

a, b, c

a, b, c

B

B*

b

D

D

D

Dh

E

F

f

go

H

H.1
HL, d
AH

h

i

A cross sectional area or passage area normal to associated velocity

component

direction cosines of wall boundary, (equation II. 9)

variable-lead constants of blade pressure surface, (equation D. i See

figures II. 12 and II. 18).

fluid thermodynamic constant, (= pf T*)

blade force coefficient, (equation HI. 6)

blade height

diameter

number of independent discrete variables, (equation II. 14)

diffusion factor, (Section IV. A. 2 only)
4A

hydraulic diameter (-)
P

number of governing finite difference equations, (equation II. 13)

friction force per unit mass, (equation I. 2)

friction loss factor, (equation I. 14)

constant relating mass and force in Newton's second law

m V2total head (= p +
P 2 go

total energy per unit mass or ideal total head, (equation IV. 24)

diffusion head loss, (equation IV. 9)

mass-averaged total head rise of inducer, (equations II. 30 and HI. 25)

enthalpy

average angle of incidence between the blade and relative streamline

direction at inlet (=f_b, 1 - f_flow, 1 )

J mechanical equivalent of heat

k cavitation number, (equation III. 38)

L loss of available energy per unit mass, (equation I. 9)

M integer in relaxation process, (see Section II. A. 3)

m distance along streamline or meridional plane, (figure III. 1)

* This list does not apply to Fortran symbols, which are defined in Appendixes B and C.

1 See Note on Units of Numerical Quantities at end of this list.
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N inducer rotative speedin revolutions per unit time (= 2_ )

n distance in direction normal to streamline or surface

a T distance from hub in quasi-normal direction (figure III. 1)

nb
NPSH

P

P
S

A
P

S

P

number of blades
Pl - Psat

net positive suction head ( - )
Pf

total pressure; viz., the pressure resulting from isentropic

stagnation (only in incompresssible flow does P = p + 0V___22)
2go

shaft power delivered to fluid, (equations II. 31 and HI. 29)

power coefficient (- go Ps / Of 3 rt' 15)

static pressure (called "pressure")

perimeter of flow channel

Psat

A

A PV

vapor pressure

dimensionless local depression of pressure below vapor pressure,

(equation IV. 8)

Q total volume flow rate

q volume flow rate per channel

R residual, (equation II. 5)

R
m

R T

R*

machine Reynolds number, (equation III. 31)

total residual, (equation II. 15)

star residual, (equation II. 16)

r radial coordinate: radius from axis of rotation

r
c

RMS

S

radius of curvature of streamline in meridional plane

root-mean-square residual, (equation II. 18)

suction specific speed, (equation III. 37), IV. 15 and IV. 16). Note that these

equations define a unitless or truly dimensionless S. To convert to the

usual, large numerical values of S based on gpm, rpm and ft-lbf

multiply the unitless S by 17,180 lbm '

S entropy

T

T*

t

temperature
B

thermodynamic vaporization constant ( - )
Pf

time

blade thickness (equation A. 2)



T
q

TSH

U

U

U

V

V

W

W

_v

w T

x

F

f, _-,
C

®

0

torque

difference in values of NPSHmin, (see figure IV. 6 and equations IV. 19

and IV. 20). Called "thermodynamic suppression head".

blade velocity ( = mr)

streamline unbalance, (equation III. 10)

radial component of relative velocity ( = Vr)

absolute velocity of fluid

circumferential component of relative velocity ( = V 0 - 12r)

"performance V__ ,,L ' (equations IV. 19 and IV. 20)

velocity of fluid relative to inducer

axial component of relative velocity ( = V )

mass flow rate (equation III. 4)

total mass flow rate, (equations II. 27 and III. 24)

two-phase fluid quality (equation IV. 6)

axial coordinate: distance from selected point on blade leading edge

successive variation ratio (see Section H. A. 3)

general coordinate surfaces, (see Appendix A)

angle between circumferential direction and blade or relative flow
direction

circulation, (equation H. 36)

angle between axial and meridional streamline directions,

(figure IlL 1)

angle between quasi-normal and radial direction, (figure III. 1)

prefixes meaning "change oP' or "increment of"

angle of deviation of relative flow (W) from blade (= _b - _flow )

boundary layer displacement thickness

convergence constant (equation II. 19 and Ill. 11)

diffusion loss factor, (equation I. 15)

diffusion coefficients, (equation IV. 10)

efficiency, (equation III. 23)

overall efficiency, (equations II. 32 and HI. 30)

vaporization parameter, (equation III. 36)

circumferential coordinate
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#

p

{r

_r

0

¢

_I,p

_Ps

'Psp

o_

distance in direction of relative streamline

stream function constant, (Appendix B only)

three-dimensional stream function (Appendix B only)

kinematic viscosity

hub-to-tip radius ratio

density

blade-to-blade average density, (equation HI. 19)

blade solidity ( = blade tip arc length/exit tip circumference)

three-dimensional stream function ( Appendix B only)

circumferential direction vector, (figure H.1)

flow coefficient, (equation III. 34)

velocity potential

inducer total head rise coefficient, (equation HI. 33)

inducer static pressure head rise coefficient, (equation II. 21)

dimensionless NPSH, (equation IV. 11)

cavitation coefficient, (equation III. 35. Based on static pressure,

as with k).

inducer angular velocity in radians per unit time

loss coefficient, (equation III. 22)

SUBSCRIPTS

b

ex

f

f

fg

g

h

i

blade

blade trailing edge (exit)

liquid (applies to properties p and s only)

if all mass flowing existed as liquid

change from liquid to vapor at constant temperature and pressure

vapor

hub

streamline index used in approximate analysis, where i -- 1 at hub

and i-- qi at shroud (see figure III. 1)
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i,j,k

i'

,

M

m

NC

P

qi' qj

r

s

sat

T

t

0

O

1

2

grid point indexes used in exact analysis

annulus index used in approximate analysis; where i' = 1 in annulus

adjacent to hub, and i' = qi -1 in annulus adjacent to shroud. Fluid

quantities so modified are assumed to exist midway between the two

adjacent streamlines, (see figure III. 1)

station index used in approximate analysis (see figure III. 1) j = 1 at

inlet; j = qj at outlet

station halfway between j and j - i used in approximate analysis,

(see figure III. 4).

mean

meridional component

value at non-cavitating conditions, (entirely liquid flow field)

pressure side of blade or channel

(see definitions of subscripts i and j respectively)

radial component

suction side of blade or channel

at saturated liquid conditions

total

blade tip (at shroud. Also at inlet unless otherwise specified)

axial component

circumferential component

far upstream

blade leading edge (inlet) except in Appendix B*

blade trailing edge (exit) except in Appendix B*

O

A

*NOTE:

SUPERSCRIPTS

vector quantity

unit vector

average

dimensionle ss

the words "inlet" and "exit" (or "outlet") apply to blade leading and trailing

edges respectively--not to the mathematical upstream and downstream

throughflow boundaries which can be at different locations.
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Note on Units of Numerical Quantities

Unless otherwise specified, values of all dimensional quantities are presented in

units of the primary dimensions which are characteristic for inducers:

Primary dimension Characteristic value or unit

Length rt, 1

1
Time -_

3
Mass Pf rt, 1

Pf _2 4Force -- r
go t, 1

Thus the data is effectively dimensionless, each numerical quantity being expressed

as some multiple of a characteristic value. Typical results for specific quantities
are as follows:

Quantity. Characteristic Value

Density p f

Velocity 9 rt, 1

Pf _2Pressure 2
go rt, 1

Mass flow rate pf _ rt, 13

In this system, pf, rt, 1 ' 12, and go will have numerical values of 1, since they are
each equal to their respective characteristic values.

Values of coefficients and dimensionless parameters are unitless by definition.



SECTIONI

FLUID FLOW RELATIONS

The physical assumptions, basic equationsand boundary conditions required fo_ ob-
taining three-dimensional solutions of the flow field for an inducer or other turbo-
machine (see figure I. 1) are presented in this section. Methods of representing
fluid state and losses and of determining required boundary conditions are discussed.

A. The Flow Model

In order to have a complete and tractable turbomachine performance analysis, the

continuum flow concept is desirable so that the flow field does not need to be broken

into parts requiring different mathematical procedures for single- and two-phase

regions. Therefore, depending on the local state requirements, the fluid is either a

liquid or a variable-density homogeneous, two-phase medium (with infinitely many

small bubbles dispersed in a fog-like manner). The flow is assumed to be adiabatic,

steady and cyclic, (i. e., similar in all channels of the machine or uniformly periodic).

1. Equations of Motion

In an absolute frame of reference, the general vector equations of con-

tinuity and momentum for such a flow are respectively as follows:

V • (,oV) = 0 (I. 1)

go -.,,-. _ .,,.-
7Vp+ (V.v) V+ F:O (I. 2)

where all symbols are defined in a table preceding this section. The

friction force vector F appears in reference 15, page 45, and is not a

body force term. It is a genei'al, and convenient way of including any
suitable loss mechanism. The classical transformation of these two

equations into one equation in terms of velocity potential (reference 12)

is not possible if we wish to retain the generality required for the typical

solutions with two-phase flow and various forms of loss description. Thus

a simultaneous solution of the equations of motion is necessary, and this

is accomplished conveniently if we describe motion in the field relative

to the rotating blade channel (figure I. 1). The resulting relative velocities

are easily converted to absolute velocities.

The continuity and momentum equations (I. 1, I. 2) are expressed as

follows in terms of the relative velocity vector W = V - "_ x r :

Continuity V • (pW) = 0 (I. 3)

10
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a) View Into Inlet

!
I
I
I
I
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b) Meridional

View
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Pressure Side
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Surface
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FIGURE I. 1. TYPICAL FLOW BOUNDARIES, INCLUDING UPSTREAM AND DOWNSTREAM

FLOW RE GIONS
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go f_2_F --_ -_ ---Momentum -h---VP- + (W.V)W+ 2_ xW+--_= 0

where _ is the angular velocity of the channel. •The density p is given by

any convenient equation of state at all points, generally as follows:

(1.4)

State p = p (p, h, W, VP) (1.5)

where the enthalpy h is found from the adiabatic energy equation along
streamlines:

EnerKy dh = d (0 r2)(W2) (i.6)

Thus, with an expression for F, we have a complete system of equations;

viz., (I. 3) through (I. 6). (Note that equations I. i and I. 2 remain inter-

changeable with I. 3 and I. 4 respectively). Observe that no requirements

of thermodynamic equilibrium are imposed by this system.

2. Relations for Two-Phase Flow and Loss Effects

The forms of the state and F relations can be changed to suit the particular

real fluid effects of the problem. Specific expressions for them appear and

are clearly noted in the Fortran IV listings of Appendixes C and D, but they

may be changed easily and without effect on the rest of the program. These

expressions, which we employed to account for two-phase effects and losses,

are based on the following assumptions (as in reference 8):

a) Thermodynamic equilibrium exists; i. e., the _ and Vp terms are

absent from the state equation (I. 5).

b) The fluid is liquid for pressure p above the saturation pressure Psat"

It is a homogeneous, two-phase, compressible continuum for p < Psat;
i. e., bubbles are considered infinitesimal in size and infinitely
many in number.

c) The fluid is barotropie; i. e., p = p (p). Also, the liquid density is

constant. This eliminates also the h term from the state equation (1.5),

and makes Psat a constant.

d) Losses are caused by friction and diffusion and are point functions of

velocity and position.

Assumption (a) ignores recent research on venturi flow (reference 16) but is

considered to be a reasonable approximation for the turbulent, more disturbed

flows in an inducer. Existing performance correlations of fluid thermal effects

12



are basedon thermodynamic equilibrium or a uniform departure from it
in all cases. The continuum requirement of assumption (b) is an essential
characteristic of the problem as already formulated.

The constant liquid density in assumption (c) is acceptable for the relatively
low pressure ranges encounteredin inducers. However, for two-phase flow,
any losses result in a pressure defect (as compared to the no-loss case) and
an entropy increase, (seeequations I. 4 and I. 12), both of which would generally
affect the density. Barotropicity exists if density is a function of the pressure
only --- a first order assumption for the adiabatic vaporization-condensation
process being considered. For example, with typical values of pressure rise,
liquid hydrogen (reference 19)has much greater changesof Psat due to losses
than most other fluids; yet in an 80%efficient inducer, the valueof Psat in-
creases by less than 1%of the static pressure rise of the machine--- much of
this increase occurring at higher (liquid) pressures.

Our barotropic state expression was developedin reference (8) and is as
follows:

pf

, P > Psat

P = pf (1.7)
, P <Psat

1 + T* (Psat -P)

where
dsf p--_-- 1 B

dp Sfg sat- pf

We assume that T'is essentially unchanged for a small value of quality,

which yields a large volume of vapor. This approach is justified by an

examination of charts of thermodynamic properties. Observe that the as-

sumption (c) of barotropicity eliminates the need for the energy equation

I. 6). However, equation (I. 6) would be required if two-phase barotropicity
is unacceptable; and a new state expression in terms of p and h would

have to be included. These relations can easily be added to the FORTRAN

listings at the same places occupied by equation (I. 7). Also required with

the energy equation would be the methods for following streamlines should

a non-uniform distribution of absolute stagnation enthalpy and whirl be im-

posed at inlet.

With the exception of blade tip leakage allowances, assumption (d) is probably

true, especially because of the rather long flow passages and the turbulent

motion and the sudden diffusions due to bubble collapse. In effect, it assumes

13



that the momentum losses due to friction and diffusion are immediately
distributed from blade-to- blade across the flow passage, (reference 8).
Secondaryflow effects on these losses are included, as discussed in
Section IV. A. 2. Using assumption (a), we can say that the work FdX done
against friction as a particle moves through a distance dX along a stream-
line is a loss, dL, of available energy, (for adiabatic flow; i. e., no heat
transfer across streamlines), (reference 20):

dL = F • dX = goJ T ds (I. 9)

This connectsthe losses with the momentum equation andthe vector F,
which may now be expressed as

--.- dL W
F- dX Iw-T

since the friction force vector is always parallel to the streamline

direction X. The magnitude _ is found from equation (I. 13).
C1A

(I. 10)

Also for thermodynamic equilibrium it is interesting to note that

dh = dp___p__+ T ds (I. 11)
PJ

which, when substituted with equation (I. 9) into the energy equation (I. 6),

gives the familiar streamline component equation of the vector momentum

equation (I. 4):

g°dp tf_r2) (4/
- d - d -dL

P

Our form for the loss dL utilizes a combination of friction and diffusion

relations dependent upon the velocity and the local hydraulic diameter of

the channel:

(I. 12)

dL = f dX W22 (4)Dh - _'d

FRICTION DIFFUSION

(I. 13)

dW
where the diffusion term applies only when .-x- < 0, and D. -- 4A/p. Specific

dA i1
values of the friction and diffusion factors are presently those determined

by the smooth-pipe (reference 21) and sudden-enlargement relations

(Section IV), respectively:

0. 6104
f= 0.00714+ "'"_"'0.35 (I. 14)

i-5
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W+ AW
1

W

W+ AW
1+

W

(I.15)

where AW is the discontinuous diffusionoccurring from incidence and

bubble collapse, which are assumed to result in Borda-Carnot (sudden

expansion type) losses, (see Figure IV. 2). That these relations give a

fair indication of the losses isdemonstrated in Section IH. Further

discussion about the merits of the factors f and _"as here defined appears

in Section IV. Note that the idea of losses as a function of position together

with the pressure could be used to describe the leakage losses at the blade

tip locations. Because of this method of describing losses, the only aspect

of the boundary layers that we need to include in the analysis is an allowance

for their displacement thicknesses when settingup the boundary conditions.

B. Boundary Conditions

Figure I. 1 shows the boundaries of a typical inducer channel. We class them as

follows:

1) Wall boundaries

a) Hub and shroud (not necessarily cylindrical or conical), and

the pressure and suction sides of the channel (blades); all in-

cluding estimated boundary layer displacement thicknesses.

b) Extensions of the blades and hub and shroud; i. e., the upstream

and downstream stagnation stream surfaces and other boundary

surfaces.

2) Throughflow boundaries: Upstream and downstream.

1. Wall Boundaries

The conditions that must be applied at the wall boundaries are as follows:

First, since no fluid may pass across them,

W. n=O (I. 16)

where n is a vector normal to the surface. This is the only condition

required at boundaries (la). On the stagnation-stream-surface extensions

of the blades (lb), however, we require the additional condition that they
exert no load on the fluid. This condition is satisfied if the pressures are

equal at any given r and z on each of two corresponding surfaces. Thus we

also satisfy the requirement that the flow be uniformly periodic, since these

surfaces are spaced uniformly about the axis; i. e., only their 0 locations

15



r
L

27r

differ and these by exactly _, where n b is the number of blades in the
machine.

Boundaries (lb) must be coincident only with the stagnation stream

surfaces that extend from the blades. For other locations, the three-

dimensional velocity field would include and can be discontinuous at the

stagnation stream surfaces. It is simpler for the boundaries to be

located at such discontinuities. We understand this readily by calling

to mind the three-dimensional corkscrew motion that superimposes

itself on the relative throughflow field, as illustrated in figure I. 2. For

two-dimensional flow in the field I. 1, view (c), there is no discontinuity

in velocity as one passes from one channel to the next, except in the

loss case, for which a discontinuity exists downstream (and upstream in

the recirculating-flow case). So, even in two-dimensional problems,

there are only special cases in which "quasi-boundaries" (reference 22)

can be extended upstream and downstream in any direction (not necessarily

that of the stagnation stream surface)-- on which one could apply simply

the condition of uniform periodic behavior in all variables.

To solve the three-dimensional problem with the required unloaded

stagnation stream surfaces, one must first assume their locations with

care, keep them fixed and proceed with the calculations. Only a few

cycles of computation by the exact method (Section I1) will reveal the cor-

rectness of these locations; and they may then be changed as required to

unload the surfaces (reference 8, page 4-34) and the calculations resumed.

The required extent of these upstream and downstream regions depends on

the type of problem being solved. For example, in two-phase cases at design

flow rates, where nearly complete unloading of the leading edge region occurs,

there is generally very little influence of inducer flow on the upstream field.

In that case, the upstream region with its stagnation stream surfaces could

very probably be reduced in extent; (they were omitted altogehter -- both

upstream and downstream in the approximate solution of Section III). Similar

elimination of the downstream region may be possible quite often, since in-

ducer blades are very lightly loaded (due to the high solidity), and the resulting

relative exit deviation angles are small. In the general case, however,
reference to the fields used in other work seems to indicate that an extension

of each of these regions of approximately one channel width away from the

blading would be sufficient for imposing uniform conditions on the throughflow

boundaries (references 23 and 24) without introducing unrealistic results such

as would be produced by external flow singularities.
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Rotation

FIGURE I. 2. RELATIVE EDDY-FLOW AT TYPICAL INDUCERCROSSSECTION.
Particularly characteristic of downstreamthrough flow boundary.
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2. Throughflow Boundaries

The mathematical conditions required at the throughflow boundaries are

not so readily deduced from the kind of physical certainty that we had con-

cerning the wall boundaries. Therefore, we conducted studies of other

types of problems to determine the physical conditions that are implied by

the known mathematical procedures of simpler examples. We could then

translate these physical conditions into analytical statements in terms of

the variables in our problem, just as we did for the wall boundaries. For

example in a three-dimensional problem in terms of the velocity potential

0 such that V2 0= 0, we must specify either 0 or its normal derivative

do/dn everywhere on all boundaries. Since _= V0, we interpret this

as requiring a statement about the component of velocity normal to every

point on the boundary. Furthermore, in order for the velocity potential

O to exist, a statement about the fluid rotation had to be made; viz,

V x -_-- 0. Also, if the rotation is specified at one point on a streamline,

it will be automatically determined at all other points on that streamline.

This is a consequence of the vortieity relations that are another form of

the governing equation. Finally, if the pressure is known at one point in

such a field, it can be determined everywhere else from the resulting

velocity field; for example, by equation (I.4)

These observations lead us to the following conclusions about minimum

required conditions on the throughflow boundaries in the general, three-

dimensional problem:

a)

b)

Specify the relative rotation V x W over a complete cross

section of the flow -- preferably at the upstream throughflow

boundary, since that is where it is most likely to be known.

Specify the distribution of relative velocity component W. n

normal to the upstream and downstream throughflow boundaries

so as to satisfy continuity. (Note that this is also being done

at the wall boundaries by equation (I. 16)).

c) Specify the pressure p at one point -- again preferably on the

upstream boundary.

The application of conditions (a) and (b) to the exact method of solution

consists of specifying the distributions of the throughflow velocity and

of the derivatives of the other two components on the upstream through-

flow boundary (equation II. 10, 11, 12). In the actual finite-difference

procedure (Section II. A. 2) this is accomplished by specifying the distri-

butions of all three components of velocity on the upstream boundary,

and of two of these components at the next throughflow station adjacent

to that boundary, Condition (c) defines the pressure field -- and that of the

18



density p when a barotropic relation, e.g. equation (I. 7), is used. If a

more general form of the state equation (I. 5) is required, the distribution

of P or of the enthalpy h (which, with p, defines p) would also be needed

at the upstream boundary.

We found that if any more complete information about the variables is

available at the throughflow boundaries, it can greatly reduce the amount

of calculation required to reach a solution. Such distributions must be

compatible with the required ones; viz., conditions (a), (b), and (c).

Thus we always specify a complete distribution of pressure at the up-

stream boundary, since the one that is compatible with the required

velocity distributions can usually be determined easily.

Conditions (a), (b) and (c) are not necessarily the only set of mini-

mum required boundary conditions upstream and downstream. An

alternate set can be found; for example, it is possible to specify at the

downstream boundary a distribution of velocity direction instead of the

normal velocity component magnitude (condition (b)). We successfully

solved two-dimensional examples of potential flow by both methods, and

in Section II some of our earlier solutions by the exact methods were

obtained by specifying (both components of) the directions at the down-

stream boundary.

Additional evidence that we have an adequate set of throughflow boundary

conditions as discussed in the foregoing paragraphs can be obtained from

the well-known procedures of approximate methods (reference 2). Our

approximate solution (Section III) specifies the upstream distributions of

all three velocity components and the compatible pressure distribution in

addition to the necessary single value at a point. The downstream deviation

angle distribution (one component of the direction) is specified. The re-
striction of the flow to annuli between stream surfaces of revolution about

the axis of rotation probably accounts for the other component of downstream

direction as well as the remaining parts of the upstream rotation distribution.

So it appears that conditions (a), (b) and (c) with or without substitution of

downstream directions in (b) together with additional compatible distribution(s)

are the proper throughflow boundary conditions. With the wall conditions

discussed earlier (Section H. B. 1), we have a complete set of boundary

conditions on our three-dimensional problems. Although there is considerable

empirical evidence of their validity, further study would be required to

obtain a rigorous mathematical proof of these conclusions (see, for example,

references 25 and 26).
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SECTIONH

THREE-DIMENSIONALSOLUTION(EXACT METHOD)

A. METHOD OF SOLUTION

In this section, the basic flow equations are expressed in scalar form and their finite-

difference approximations are presented. Next, the numerical treatment of boundary

conditions is examined and an algorithm is developed for a numerical solution of the

system of finite-difference equations, and certain effects of grid size are discussed.

Finally, the form of the results and their relationship to inducer performance is
discussed.

1. Scalar and Finite-Difference Form of Basic Flow Equations

We construct a cylindrical coordinate system (figure II. 1) which rotates

in the same direction at the same angular speed, It, as the flow channel

(figure I. 1). This relative coordinate system is described by three

mutually perpendicular unit vectors where _ points in theo direction of
increasing r, _" points in the direction of rotation, and _ points along the

axis of rotation.

The components of tl_e vector equation of momentum (I. 4) in the directions

of r, 0 and _ are, respectively (reference 9),

go 0P+ 0u v0u 0u 1 )2
-P- 0"-_ u-_-r + r-_- + w O_-- r (v + r[t + Fr

--0

0v " v 0v 0v uvgo 0P +u--+ +w_ +--+2u_ +
rp 00 Or r 00 02 r F0

=0

(U. 1)

(II. 2)

go 0P 0w v 0w 0w
+u--+--_+ w +F

P O_ Or r 3 0 -_
=0 (H. 3)

where u, v, and w are the radial, circumferential and axial components,

respectively, of W, and Fr, F0 and F_ are the corresponding components
of the vector F.

The equation of continuity, in scalar form is

u Ou 1 Ov Ow 1 Op v
r

OP + w OPoo ) :o (U. 4)

This system of four partial differential equations, together with the appli-

cable relations for density and the scalar FVs (equations I. 7 and I. 10) and

the attendant boundary conditions (see Section I. B), constitutes the complete
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FIGURE II. 1. ROTATING COORDINATE SYSTEM AND RELATIVE BASE VECTORS
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set of relations required. To obtain a numerical solution, we represent
the flow field by a grid of points of intersection of three families of surfaces.
Each such grid point is identified by three indexes as shownin figure II. 2.

Next, corresponding to eachof the equations (H. 1) through (II. 4), four
residuals are computedat each grid point as follows:

(R1)i,j,k = +u +-- +wr LO_J

1 (v+r_)2+F }r r
i,j,k

(n. 5)

(,o [04 vro l+(R2)i,j,k = _p LOoj + u + r LooJ w

uv }+ + 2u_+ F o (II. 6)r
i,j,k

(R3)i,j,k = -P- L_-_J ULarJ -r- + w + F i,j,k

={ u+[°4+,_[,4+r,...1(R4)i, j, k r r LO _J (g. s)

1 (u[O_.pr] v lOP] 0[.._..]) }
+ _ + +Wp r

i,j,k

The values of the first three residuals are measures of the local non-

equilibrium in the radial, circumferential and axial directions, respectively,

and (R4)i ' j, k gives a measure of the extent to which local mass conservation
is violated.

The local density p i, j, k, is computed from a state equation (see Section

I. A. 3) and the terms (Fr) i, j, k, (F0)i, j, k and (Fz)i, j, k from given loss
formulae, if any. These four differential equations will yield residuals

for assumed distributions of the variables, u, v, w and p. It would be

possible to assume a p distribution also -- which would then cause the

state equation (I. 7) to yield residuals. However, this is not necessary,

since we have an explicit algebraic relation for p in terms of the (assumed)

p values (equation I. 7). A similar statement can be made about the F terms.
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FIGURE II. 2. TYPICAL "STAR" OF GRID POINTS FOR FINITE-DIFFERENCE

EQUATIONS IN (a) CYLINDRICAL OR (b) GENERAL COORDINATE SYSTEMS.
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All indicated partial derivatives are computedfrom their usual, second-
order, finite-difference approximations (reference 27, pp. 245-6). For
example, at an internal point for a cylindrical coordinate grid,

Pi+l,j,k - Pi-l,j,k

i, _,k 2Ar

U -U

i, j, k

W. -- W°

1, j,k+l I, j, k-1
2A_

i,j,k

where Ar, A0 and A_ are the finite increments between grid points in the

radial, circumferential and axial directions, respectively.

At a boundary point, an appropriate one-sided difference expression is

used. For example, if the point (i, j,k) lies on the hub, we use

Pi + 1, j,k - Pi, j, k
0[_] --

i,j,k Ar

and similarly for other variables and at other boundary points. This is

exactly the formula which would result if a linear extrapolation were made

to a fictitious point outside the boundary and then the above, second-order

formulae used.

These formulae are valid if the boundaries are coordinate surfaces, as in

figures II. 5 and II. 8. For boundaries of arbitrary shape, a special coordinate

transformation is applied to the equations before the finite-difference equations

are determined. This transformation, which does not alter the following

discussion, is described in Appendix A.

An ideal solution to the system of finite-difference equations is a distribution

of values, Pi,j,k' ui, j,k' vi, j,k' andw.l,j,k, which satisfies all boundary

conditions and makes the four residuals, (R1)i, j, k through (R4)i, j, k, vanish

at all grid points.

Observe, however, that at an internal point the central value of the pressure,

Pi, j, k, is absent from all four residuals (equations II. 5 through II. 8).
Therefore, these four local residuals alone are ineffective in determining a

proper value for pi, j, k. There are other reasons why more than the four
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point resuduals must be considered at a time. These reasons, due to the
finite-difference treatment of boundary conditions, are discussed next.

2. Special Considerations at Boundary Points

At every wall boundary point, the three velocity components must satisfy

the condition of equation (I. 16), which is

W ."_ = 0

In terms of the grid points, this becomes

u. +v. bi, +w. --01, j,k ai, j,k 1, j,k j,k 1, j,kCi, j,k
(II. 9)

where ai, j, k, bi, j, k and ci,j, k represent the components of the vector n,
normal to the wall boundary at grid point (i,j,k). This immediately im-

poses a dependence of one of the velocity components upon the other two

(see Appendix A), in addition to the relationships already required by the

four governing equations (II. 5) through (II. 8).

One important feature of the present problem is the fact that at each grid

point, there is a system of equations to be satisfied. This poses some

difficulties at boundary points. Note that in a problem involving a single

equation and a single variable, it is sufficient to have the boundary value

of the variable determined solely by the imposed boundary condition without

requiring that the governing finite-difference equation be satisfied there

also (reference 27, pp. 260-265). In our problem, however, four values

(p, u, v, and w) have to be determined at a boundary point. The single

condition (II. 9) is obviously insufficient, especially in view of the fact

that this condition is independent of Pi, j, k. We therefore require that the
four governing finite-difference equations be satisfied at a boundary point

as well as the imposed boundary condition. This is a redundancy of the

entire system of finite-difference equations in terms of the total number of

discrete values. No mathematical inconsistency is implied here, since

the governing equations must be satisfied everywhere in the field, including

the boundaries. However the numerical procedure that we are using

introduces errors because it employs linear extrapolations at the boundaries.

The correct extrapolations are obscure, and we have found the linear ones

to be most practical in this work. Further discussion (see Section II. A. 5)

will demonstrate that the effect of this numerical inconsistency in the boundary

regions vanishes as the finite spacing between adjacent grid points is

diminished.

Over the entire inlet region, the three components of the vorticity vector,

V x _, are specified (see Section I. B). These components are given by
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- 1E, ,(vxW) r= r Oz (rv
(II. 10)

-_- au 8w
(v x w) 0 = _ Or

(II. 11)

- :-:E r,rv,-(V x W)z r
HI. 12)

It is therefore sufficient to specify the distributions of wi, j, k only on the

first station (k = 1), and ui, j, k and vi, j,k on the first two stations (k = 1, 2)

since, with these specified values, all partial derivatives appearing in the

above three expressions can be computed.

The remaining boundary conditions discussed in Section I. B are imposed

on the finite-difference problem by fixing distributions of Pi, j, k on the

first station and wi, j, k on the last one.

I__t I, J and K denote the total number of radial, circumferential and axial

grid-stations, respectively. Then the total number, E, of governing

finite-difference equations (corresponding to equations (H. 5) through

(n. s)) is

E = 4UK (II. 13)

remembering that p and the F terms are specified by explicit formulae in

terms of pressure and velocity. Since there are then three velocity

components and one pressure to be determined at each grid point, the

total number of discrete variables* is also 4IJK. However, the values of

some of these discrete variables are fixed (as by throughflow boundary

conditions) and some are determined by the values of other variables (as by

wall boundary conditions, equation (II. 9)). Thus the total number, D, of

independent discrete variables can be computed to be

2 velocity components

determined by

Hub &
Shroud Blades

D=4IJK - (2JK + 21K +

, Specified:

Upstream: u, v, w, p

Station adjacent to

upstream: u, v,

Downstream: w

71J)

=4 K [2K •7.] (..4)
Thus, as a consequence of the boundary conditions, the number of governing

finite-difference equations is clearly greater than the number of independent

*By "discrete variable", we mean the value of a variable at a specific grid point; e. g.,

Pi, j,k. 26



discrete variables, (E >D). Such is the nature of the general
boundary value problem, which suggestsa "least-sum-of-squared-
residuals" approach, (reference 28, pp. 209-210).

3. Co__o_m_putationalAlgorithm Using Star Residuals

The above observations lead us to define a "total residual"

(II. 15)

i=1 j=l k=l ,j,k (R2)i,j,k (R3)i,j,k j,k

Since the vanishing of all residuals at all grid points is completely

equivalent to the condition R T = 0, the purpose of the computational

algorithm will be to obtain discrete distributions of the three velocity

components and the pressures which will tend to minimize the value of

RT.

A change in the value of a variable at point (i,j, k) can affect the residuals

computed at no more than the seven points of a "star" centered at point

(i, j, k), as shown in figure II. 2. This portion of R T which is affected by a

change at point (i, j, k) will be called the "star residual at point (i, j, k)"

and is defined by

1, j,k i,j,k j,k i,j,k j,k j,

22"
where the symbol denotes summation over the seven points of the

i,j,k

star centered at point (i, j, k). (If this central point is a boundary point,

this star may have only 6, 5 or 4 points.) Thus, the method will consist

of determining values of the independent discrete variables at each point

(i, j,k) which will tend to minimize the value of R*i,j, k"

(II. 16)

Considering general applicability and ease of programming, the compu-

tational algorithm which was constructed consists of trying a predetermined

sequence of corrections to each independent discrete variable at each grid

point and accepting only those variations which reduce the value of the local

star residual (and thus reduce the value of the total residual). This procedure

is applied, i'epeatedly cycling through the entire three-dimensional grid of

points until an accuracy criterion (discussed in Section II. A. 4) is satisfied.
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Specifically, four initial variations are selected: Su, _v, 8w, _p. Also,
an integer, M, and a number, 0<a<l, are fixed. At each grid point, the
value of R'i, ], k is first computed, using the current values of u, v, w, and
p at the surrounding grid points. To determine an "improved" value of
ui, ],k, for example, R'i, ], k is recomputed, successively using

2 n
ui, j,k ± _u, ui, j, k • abu, ui,j, k +- a _u ..... ui, j,k± a 6u

until either a reduced value of R'i, j, k is obtained or until n = M, wheren
0 < n < M. If one of the variations ui, j, k ± a Su yields a lower value for

R*.l,],k. then that variation is recorded as the new value of ui, j, k.
Otherwise, no change is made. Exactly the same procedure is applied

to the other variables and only those variations are accepted which effect

further reductions of R'i, j-', k" The successive treatment, of,,all the ,vgrld"
points in the field in this manner constitutes one relaxatmn cycle.

Therefore, by construction, the algorithm guarantees a monotonic

reduction of R T. (We found empirically that M = 3, a -- 0.1 and
/iu = 6v = 6w = _p = 0.1 gave good results where the initial distributions

were obtained from one-dimensional calculations, as in Section II. B. 3. )

With each trial variation, the values of Pi, j, k, (Fr)i. j. k, (F0)i, j, k and

(F_)i, j, k are recalculated from the appropriate formulae, before the
corresponding R*.. is recomputed. At a wall boundary point, one of

1, j,k
the three velocity components is selected as dependent upon the other two

(see Appendix A) and its value is computed from equation (II. 9). All

values which are fixed by throughflow boundary conditions are, of course,

not varied.

At the beginning of each succeeding cycle, the magnitudes of Su, 8v, _w

and _p are set equal to the respective maximum values of the variations

which were accepted during the entire previous cycle.

Thus, the magnitudes of the individual trial variations are automatically

decreased as a solution is approached. The values of a and M remain fixed.

It is possible that the theoretical rate of convergence can be improved by a

compound method such as suggested by Marquardt (reference 29) or

Golffeld, Quandt and Trotter (reference 30). We note, however, that both

of these methods ultimately rely on the choice of an "accelerating parameter"

which is successfively varied until the actual numerical value of R T (i. e.

the quadratic functional to be minimized) is decreased. Much additional

empirical work is required to adapt such methods successfully to a given

problem, as evidenced by the following example: We selected a problem

for which we had obtained a solution by the above-described method of successive

variations. We modified the computer program so that the star residual

reduction was accomplished by a gradient technique, based on a second order

28



Taylor-approximation to R* in terms of x, (where x denotesone of the
discrete variables, u, v,w, or p, to be determined. The resulting iterative
formula was

(x + $x) --x -

02R *
>0

aR* 02R *

provided 0x 2 . The indicated first and second order derivatives

were computed from values of R* corresponding to three trial values of

the variable x. A comparison of the chronology of the root-mean-square

residual

(]I. 17)

(H. 18)

for both methods is shown in Figure II. 3. After some time, the gradient

method became less effective whereas the method of successive variations

continued convergence at an almost constant rate. Thus our algorithm

with possible modifications such as in a and M remains as the currently

most practical approach. This is due partly to its programming simplicity

as applied to the specific finite-difference problem treated here and to the
fact that other methods which at first seemed attractive from a computing

time standpoint were less effective.

4. Accuracy Criterion

In order to relate the value of RMS (see equations (II. 15) and (II. 18)) to

actual inducer performance note first that the three "momentum residuals"

given by equations (II. 5), (II. 6) and (II. 7) have the units of a head gradient,

or velocity-squared divided by a length. If the "continuity residual",

equation (1I. 8), is multiplied by a characteristic constant velocity, e.g.

_2rt, 1(*), thenthe root-mean-square residual, RMS, can be interpreted
as a typical error in local head gradients. Also the continuity residual

then has a magnitude that is comparable to that of the other residuals,

which gives it the correct perspective for adjustment purposes, (see

equation II. 15). We now require that the value of RMS be small compared
to a characteristic head gradient for the inducer, such as ( _2rt)2/r t

That is, we require that

RMS < , (_22rt, 1)

where _ is some small number, say _ = . 01.

(If.19)

* Note that this velocity is equal to unity if the problem is being solved

nondimensionally.
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FIGURE II. 3. COMPARISON OF METHOD OF SUCCESSIVE VARIATIONS AND GRADIENT

METHOD. Root-mean-square, residual (RMS) vs. running time on IBM 7070. (The Univac

1107 that we used in subsequent runs takes about 1,./50 of the time.)
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If the values of Pi, J, k, ui, j,k, vi, j,k and wi, j, k are randomly distributed
about the "correct" values, then about half of the residuals can be expected

to be positive and the other half negative. The cumulative effect of all
residuals from inlet to outlet for this distribution of variables would result

in a head rise error at outlet which is still much less than _ (_22rt, 1) Am.

Am represents meridional inlet-to-outlet distance along a typical streamline.

However, should a biased distribution of values exist, such as an initial

distribution of p -- o everywhere, then we can expect the residuals to be

dominantly of one sign, (although they might all still be of approximately

the same magnitude as in the above case) and the cumulative effect would

be an error in head rise of order

_(_2 2 rt, 1) Am (II. 20)

From the definition of the static pressure head coefficient for an inducer

Ap/Pf
,p =

p ( art, 1)2/go (II. 21)

we see that, in this case, the error in go Ap Pf at the outlet would

/ Am\times the correct head rise of the machine.be comparable to 1

f_I,p

/_ Am\
Hence a more realistic convengence requirement would be RMS <_--_ r_t, 1) (_22 rt)
but since _ can be chosen to suit specific cases of Am and _I,p,

we have retained generality by stating simply that rt, 1

RMS < e ( f_ 2 rt ' 1). It is therefore advantageous to estimate the initial values
of the pressure and velocities by a preliminary, one-dimensional calculation

of the flow. This is demonstrated in the discussion in Section II. B. 3.

Finally, if the grid effects or limitations on computing time make it impossible

to achieve negligibly small values of all the residuals, the acceptability of a

particular numerical solution must then be determined by more than just the

value of RMS. In the case of the investigations of our (Section II. B), series

of examples we were limited by computer size and cost to coarse grids.

Thus in most of these examples the numerical procedure (see Section II. A. 2)

made it impossible for us to reduce RMS to the satisfactorily low value

that would make it the only necessary criterion for an accurate solution.

Furthermore this required us to impose a limit on the time or number of

computation cycles, which usually was reached before _ could be achieved.

Therefore, in our presentation of examples in Section II. B we compare the

actual distributions of p, u, v and w with known solutions, whenever possible;
and we examine the circulation and other representative quantities in

addition to the behavior of the residuals.
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5. Effects of Grid Point Density

There :is an effect which the density of grid points has on the minimum

attainable total residual {equivalently, the root-mean-square residual,

RMS, as defined by equation (II. 18)} for a given finite- difference problem

when the method of star residuals is applied. This is due to the linear

extrapolation of the discrete variables which is made at boundary points. :

If it is required that the discrete variables satisfy all governing finite-

difference equations at boundary points in addition to the appropriate

boundary conditions, as discussed in Section II. A. 2, the correct

extrapolation formulae would be required at boundaries in order for

the system of equations to yield zero residual. For example, incorrect

extrapolations which satisfy one differential equation normal to a boundary

will produce boundary values of the variables that will not completely

satisfy the other equations--particularly those that govern motion parallel

to the boundary, Since a linear extrapolation is used, a linear behavior

is forced on the variables in a region extending one grid space from the

boundaries to the interior of the field. For a relatively coarse grid, this

discrepancy will be dominant and, consequently, the total residual, R T,

can only be minimized to some non-zero value. As the grid is refined,

however, the linear approximation to the variables extends over a much

smaller region and the effect of the discrepancy diminishes. Thus the
minimum attainable total residual can be expected to approach zero as the

mesh size {distance between adjacent grid points} approaches zero.

To illustrate this effect, we consider the problem of solving, by use of

star residuals, the equations of incompressible flow which is irrotational

in the absolute frame of reference:

W=0

+_2_" =0

We will discuss a two-dimensional solution of these equations over a

region which is a cross section perpendicular to the axis of a paddle-

wheel channel (see figure II. 8). The scalar equations are

(II. 22)

(If. 23)

u Ou 1 Ov
--+ _+ -0
r _0r r 00

v Oy 1 Ou
--+ +21] =0
r Or r OO

where u = o on the hub (r = rh) and shroud (r = rt) and v = o on the
blade surfaces. * We obtained solutions to this problem, by the method

of star residuals, on grids of 5x 5, 9x7, 9 x 9 and 15x 15 points,

• This special, two-dimensional problem will be referred to again in Section H. B. 2.

(II. 24)

(II. 25)
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requiring the discrete values of u and v to satisfy the finite-difference

equations resulting from equations (II. 24) and (II. 25) in addition to the

boundary conditions on the hub, shroud and blade surfaces. Each problem

was run to "convergence", i.e. until the root-mean-square residual

(RMS) could not be reduced much further. This yielded essentially the

minimum obtainable RMS. The results (see figure II. 4) indicate that the

minimum attainable total residual approaches zero with diminishing mesh

size. Therefore, any numerical discrepancy (due to requiring that the

discrete variables satisfy all governing finite-difference equations in

addition to the boundary conditions) vanishes as the density of grid points
is increased.

Another numerical phenomenon, the "take-up effect", is a second order

grid effect that is noticeable especially when coarse grids are employed.

It is the property that yields lower minimum RMS residual results for

a given grid cross-section as the number of independent discrete variables

D (see definition near the end of Section If. A. 2) is increased. The pre-

ceding two dimensional problem is an example. Its minimum RMS residual

is given in Figure II. 4. Extending it axially into the third dimension in-

creases D, adding residuals of the axial component equations which will be

adjusted to non-zero values. (As shown in reference 12, the same two-

dimensional solution is expected on all subsequent r - 0 planes.) This

changes slightly the adjacent downstream two-dimensional distributions,

making it possible to reduce their residuals further than was possible in

the purely two-dimensional problem.

Also, changes to the system of equations or boundary conditions is a way

to change D in a given field. In any case, the residuals thereby added

have the ability to "take-up" some of the error caused by boundary effects,

which process yields a lower minimum RMS, for the given grid cross-

section. Figure II. 9 gives the results for this same problem (using for

initial values the answers that produced the 9 x 7 point in Figure H. 4} as

D was increased over that of the purely two-dimensional 9 x 7 field.

(See Section II. B. 2 for more detail on the problem.) Figure II. 11 shows

that this "take-up effect" is subordinate to the grid-point density one,

because the effect (on minimum RMS) of increasing D is limited R as

might be expected if the two-dimensional 9 x 7 grid cross-section example

we have been using were to be extended infinitely in the axial direction.

Finally, in the normal case of a fixed three-dimensional field with a fixed

system of equations and boundary conditions, D cannot be varied, and there

is no take-up effect -- only the (primary) grid point density effect. However,

as will be demonstrated in Section II. B, we did vary D in some of our

investigations; and these distinctions of grid phenomena must be remembered
as one examines the reBults.
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FIGURE II. 4 EFFECT OF GRID POINT DENSITY. Minimum attainable root-

mean-square residual (RMS) as a function of the number of grid points (G)
{ - ._ _ }for two-dimensional solutions of V. W= 0, VxW+ 212 = 0 by star

residuals.
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6. Form of the Results

The results of a computer run consist of three-dimensional distributions

of relative velocity components, pressures, and the accompanying densities.

These distributions directly indicate blade-to-blade pressure loadings and

inlet-to-outlet velocity distributions on the blade surfaces and their

extensions. But to obtain the customary overall performance parameters,

certain averaged quantities must be extracted from these distributions.

For this purpose a data reduction program was written. Details of this

program are presented in Appendix C.

The mass-averaged parameters are calculated from finite-difference

approximations of the following formulae:

Static Pressure Head

Srh rdrd0
Pp) = WT (1]. 26}

where the total mass flow rate across the inlet plane of one channel is

calculated from

rt ,.0sw w f J^ ( p w) rdrd0-- z

nb r h _ p
(II. 27)

Absolute Velocity Head

f rt f:; _2"_ol Iu 2 + (v+ r12)2+w2] (pw)

(2V-_) = rh
w T

r drd0

(II.28)

Input Energy

(uvo) --

r t
frh fg0; Erl_ (v+r_)] (pw) rdrd0

WT

The above three quantities are calculated at the channel inlet and at the

outlet. From these we obtain ......

(H. 29)

35



Total Head Rise

1 1

(1"[.30)

Shaft Power Delivered to Fluid

n--_- go (II. 31)% 2

Overall Efficiency

77 _ AH w T (II 32)
P

S

Further details of the calculations are given in Appendix C.

B. APPLICATION AND RESULTS

The results of applying the method of solution to a sequence of problems are presented

in this section. The problems were solved in order of gradually increasing complexity,

and Table II. 1 shows the purpose and general result of each one. We employed three

types of geometry to determine a) the ability of the program to proceed to a correct

solution, b) the grid effects and attainable accuracy and c) the applicability to inducer

flow analysis.

The specific geometries were

(1) Paddle-wheel channel with wheel-type axial flow (liquid and two-phase).

(2) Paddle-wheel channel with irrotational, incompressible, axially constant

flow (reference 12).

(3) Two typical, variable-lead inducer channels, including upstream and

downstream flow regions (liquid and two-phase).

The geometry of each channel is presented, followed by selected numerical results

and a discussion of some of the phenomena which they illustrate. All problems are

solved nondimensionally, according to the system presented at the end of the List of

Symbols prior to Section I.
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1. Paddle-Wheel Channel With Wheel-Type Flow

The geometry of this six-bladed channel is shown in figure H. 5. The

primary purpose of solving the first two problems on a 3 x 3 x 3 grid

was to have a simple checkout of the computer program. Due to the

special shape of the channel, the wall boundary conditions {equation

{II. 9)) are simply

Uh= ut =0"0 }
Vs= Vp= 0.0

Boundary conditions, known correct answers, and obtained results are

shown in tables II. 2 and II. 3. Initial assumptions for both runs were

made to differ from their correct values randomly by about 0.2.

Run E-l: All Liquid Flow

The correct solution has

u=0.0}

v 0.0 everywhere

w 1.0

The only pressure gradient is in the radial direction. Integration of this

radial gradient gives

1 _22

P=Ph + _ Of _oo (r2. rh2)

Setting Ph -- 0, this gives correct answers of the continuous problem as

ph = 0.0

PM = 0. 16406

Pt = 0.46875

where the subscript M denotes the grid point half-way between hub and

tip. Solving the finite-difference analogs of equation (H. 5) simultaneously

at the three grid points, however, gives

(II. 33)

H. 34)
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FIGURE II. 5. PADDLE-WHEEL CHANNEL FOR WHEEL-TYPE, AXIAL

FLOW CALCULATIONS. Runs E-l, 2.
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RUN E-l:

TABLE II. 2

PADDLE WHEEL CHANNEL WITH WHEEL-TYPE,

AXIA L, LIQUID F LOW

LOCATION

(c)

RESIDUAL

p u v w (a)

Typical Randon Hub
Initial Mean

Assumptions Tip

0.0 0.0 -0.19 1.18

0.08 0.19 -0.19 1.19

0.04 0.0 -0.18 1.21

mmWw

Hub

Correct Mean

Answers Tip

0.0 0.0 0.0 1.00 0.0

0.09375 0.0 0.0 1.00 0.0

0.46875 0.0 0.0 1.00 0.0

Results Hub

Showing Mean

Max. Error Tip

-0.00781 0.0 0.00156 1.00475

0.08625 0.00156 -0.00038 1.00394

0.46156 0.0 -0.00156 1.00269

0.00968 _)

0.00500

0.00399

Im_po sed _ Conditions

Upstream: p=0.0
u=0.0

v=0.0

w=l.0

(at one point on hub)

Downstream: Directions fixed by requiring that

U
m=0.0
w

V
-0.0

w

a This residual is the root-mean-square of the four local residuals

b Accuracy criterion is _2 rt, 1 =1.0. See equation (II. 19)

c Applicable to any grid point on the surface of revolution--hub, mean or tip.

See Figure II. 5.
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RUN E-2:

TABLE II. 3

PADDLE-WHEE L CHANNE L WITH WHEE L-TYPE,

AXIAL, LIQUID AND TWO-PHASE FLOW

p U V w

0.5 0.0 -0.19 1.18

0.5 0.19 -0.19 1.19

0.5 0.0 -0.18 1.21

LOCATION

(c) p

Typical Random Hub O. 0
Initial Mean O. 0

Assumptions Tip O. 0

RESIDUAL

(a)

Hub 0. 897

Correct Mean 0. 983

Answers Tip 1. 358

O.905 O.0 O.0 1.O0 O.0

O. 985 O.0 O.0 1.O0 O.0

I.000 O.0 O.0 1.O0 O.0

Results Hub 0. 895

Showing : Mean 0. 979

Max. Error Tip 1. 354

.907 0.0 -0.00004 1.00386

.980 -0.00133 -0.00006 1.00298

1o000 0.0 -0.00002 1.00188

0.00216 _)

0.00098

0.00090

Imposed BoundaryConditions

Upstream: p= O.897

u-- 0.0

v= 0.0

w-- 1.0

Downstream: None

a

b

C

This residual is the root-mean-square of the four local residuals

Accuracy criterion is l_
2

--1.0.
rt, 1 See equation (H. 19)

Applicable to any grid point on the surface of revolution -- hub, mean or tip,

See Figure H. 5.

\
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Po = 0.0

PM = 0. 09375

Pt = 0.46875

The discrepancy at point M is due to the linear approximations made at

the hub and tip points.

In Section II. A. 5 we explained that incorrect extrapolations would not

satisfy all the differential equations simultaneously. However in this

example we have simply a one-dimensional problem because the answers

yield no variation in the axial and tangential directions with only one

equation (H. 34). Thus it is possible to attain all zero residuals, although

the results for the discrete problem disagree at one point with the solution

of the continuous problem. (See the discussion of 'Vdiscretization error v'

in reference 27). Results of this problem are shown in figure II. 6 and

table H. 2.

Run E-2: Liquid and Two-Phase Flow

For this problem, we were able to determine values of Ph, PM' and

Pt so that, for Pf = 1.0, Psat = 1.0 and T* = 1.0 (see equations (I. 7)

and (I. 8), it was again possible to have all residuals equal to zero

in the finite-difference solution. Using the same initial assumptions

for velocities as in Run E-1 and zero for pressures, figure II. 7 shows

that after 110 relaxation cycles the RMS value continues to approach

zero, as expected for this case. Table II. 3 shows how close the results

are to the known, correct values. We observed that inclusion of the

state equation in the computations did not cause any perceivable increase

in running time per relaxation cycle.

2. Paddle-Wheel Channel with Irrotational Flow

The geometry for this channel is shown in figure H. 8. The hub-to-tip

radius ratio as well as the blade-to-blade angles were obtained directly

from figure 2 of reference 12. The channel which we consider here is a

portion of the channel used by Ellis and Stanitz (for which complete,

detailed results are presented in reference 12) upstream of where the

effects of radial flow are felt. This is a hypothetical problem since

the paddle-wheel portion of the channel would have to extend infinitely

far upstream in order to yield an irrotational, axially constant flow

pattern.

However, it is another problem whose numerical solution can be determined

by simpler methods. This problem also demonstrates the finite-difference
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phenomenonof our methodwhich is called the "take-up effect".

The solution of this special three-dimensional problem is merely an
axial propagation of a two-dimensional flow pattern with relative
rotation of 2 _2. It is, therefore, a propagation in the _ -direction of
the solution of the equations

u + Ou + 1 Ov -0
r Or r O0

v Ov 1 Ou
_+ +2ft =0
r Or r O0

(II. 24)

(II. 25)

This problem was presented in Section II. A. 5. As starting values for
velocities in the three-dimensional problem, we used the numerical

results of the two-dimensional problem on a 9 x 7 grid and applied them

at all axial stations, along with a constant through-flow velocity of

w = 1, 0. Initial distributions for pressure were obtained from

,u22, v2,2,1P=Po +- (r-ro2)- -u2g o o
(H. 35)

which is a consequence of applying the streamline component of the

momentum equation (I. 4) with an assumption of constant "inlet"

pressure infinitely far upstream. The subscript o denotes a reference

point, arbitrarily selected at the intersection of the "pressure blade"
surface with the hub. The corresponding initial RMS value is 0. 169.

This RMS value is not zero because of the effect of the relatively coarse

grid, explained in Section II. A. 5, (see the 9 x 7 point in Figure II. 4).

On the upstream throughflow boundary of this channel, we fixed the

distributions of u and v in accordance with the results of the two-

dimensional irrotational flow problem solved in Section H. A. 5.

The w distribution on that boundary was set at unity and we fixed the

value of Po at the reference point of equation (II. 35). On the downstream

throughflow boundary, we imposed flow directions by fixing the values

of the ratios u/w and v/w, usingtheupstreamdata. Although this set of

boundary conditions is valid since they are known results, the impossibility

of determining downstream flow directions for the general inducer problem

is apparent. For a discussion of alternate throughflow boundary conditions,

please see Section I. B. 2.

For this problem, the following three runs were made:
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Run E-3:9 x 7 x 3 Grid With Exit Flow Directions Fixed

Since this is solved three-dimensionally, we will not require the axial

derivatives to be zero. Therefore, all values on the second and third

axial planes are free to readjust so as to improve the radial and

circumferential residual nonequilibrium at the sacrifice of small axial

gradients in accordance with the "take-up effect, " and the resulting

RMS value after ten relaxation cycles is 0. 090 (see figure H. 9).

The amount of readjustment which occurs due to the take-up effect

is small as can be seen in figure II. 10.

Run E-4: 9 x 7 x 3 Grid With Exit Flow Directions Free

With the same grid of points as for the previous run, we lifted the

downstream requirement that the ratios u/w and v/w have specified

values. (See discussion below.) This introduced more independent

discrete variables D for the same number of governing finite-difference

equations (see Sections II. A. i and 2). As in the previous run, this

permitted more readjustment of the variables to further reduce the

residual amount of nonequilibrium and the results of 20 cycles for this

run are shown in figures II. 9 and II. 10.

Run E-5" 9 x 7 x 5 Grid With Exit Flow Directions Free

Again using the same grid spacing as in the previous two runs, but

extending the channel by adding two axial stations, we made another

2-cycle run. The additional axial stations enabled further "take-up"

of axial gradients and a further reduction of the minimum RMS value

was attained (figure II. 9).

The lifting of the downstream throughflow direction requirement did

not result in a radically different flow pattern (see figure II. 10) probably

because the initial distributions were very close to the correct values.

A complete set of boundary conditions is still required for the general

problem (see Section H. B. 3).

In all three of these runs the coarse grid-point density caused the minimum

RMS residual to be too high to serve as the only criterion for judging the

accuracy of the solutions. In fact (as will be seen) it is quite possible for

the answers to be correct on the average but for the minimum RMS to be

high, as was discussed in Section II. A. 4. Further, in the absence of

any "take-up" by axial gradients-- as is the case in our two dimensional

solution of equations (II. 24) and (II. 25) (see Figure II. 4) -- the effects

of the relatively large resulting RMS residual appear to be felt mainly

in a fairly uniform way near boundaries, tending to yield better average

answers. The take-up effect, while reducing the minimum obtainable
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RMS residual, never reduces it far enough to guarantee accurate answers--

and it propagates errors (especially axially). The net result of the take-

up effect -- as long as coarse grids are used -- is then a decrease in the

accuracy of the average answers. Examination of the relative circulation

around the perimeter of the passage at exit -- a useful criterion of average

accuracy -- will demonstrate this point.

Figure II. 10 shows that the largest deviations in the velocity field
occur close to the hub. With this we expect to see a corresponding

change in the calculated circulation, F.

By definition

where the integral is taken around the boundary of a channel cross

section.

By Stokes' Theorem

f_ _F= V xW .dA

where the integral is taken over the entire area of the cross section.

Since

VxW =-2_

for irrotationality (see reference 9, p. 11), we have

F--- fA 2_ . d-_=- f_(rt2- rh2 ) (0 s- 0p)

Calculating the absolute value of this with the dimensions shown in

Figure II. 8, we obtain the theoretical circulation for this problem as

Ftrue = 0. 49444. Substituting boundary velocities into an approximation

to equation (II. 36) and comparing these calculated values of circulation

at exit to the theoretical value we have the following table of results:

(g. 36)

(ll. 37)

(II. 38)

(II. 39)
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TABLE II. 4

COMPARISONOF CALCULATED RELATIVE CIRCULATION AT CHANNEL
EXIT W_H THEORETICAL CIRCULATION FORRUNSE-3, 4, 5

For Results of Fcalc / Ftrue

Ellis & Stanitz (reference 12) .............. 0. 999

Initial values from equations (II. 24, 25) .......... 0. 958

Run E-3 - Cycle 10 .................. 0.919

Run E-4 - Cycle 20 .................. 0.907

Run E-5 - Cycle 20 .................. 0. 891

This illustrates the error propagating capabilities of the take-up effect

where coarse grids are used. The residual amounts of nonequilibrium,

due to finite-difference approximations made at boundary points (see

Sections II. A. 2 and 5), are reduced in exchange for some circulation

around the boundary, thus distorting the purely two dimensional field

of the cross-sections.

The phenomenon of the "take-up effect" is summarized in figure II. 11
where the minimum attainable RMS values for each run are estimated

from figure II. 9, as explained in Section H. A. 5.

3. Three-Bladed, Variable-Lead Inducer Channels

To demonstrate the applicability of the computer program to general

problems, two typical inducer channels were selected, each with

variable-lead, radial-element blades. Figure H. 12 shows the general

geometry for these inducers.

For each channel a "natural" coordinate system is selected so that the

channel boundaries become coordinate surfaces. A development of the

necessary transformation formulae and a discussion of special

conditions and restrictions are given in Appendix A. The first inducer

flow problem is described by

RunE-6:6.2 ° Inducer- 5x 5x10 Grid

The lead equation for the blades of this inducer is

d_ 10857 + 03444 _2
r tan _b = d--'_= '----_ ",-_---_

a c
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where _ -- 0 at the blade leading edge. This gives blade tip angles of 6.2 °

and 11.5 °, respectively, at the leading and trailing edges.

The finite-difference grid includes one station at a distance of approximately

one-half of a channel width upstream of the blade leading edge. The angle

of these upstream stagnation surfaces is chosen so that

dO
ds w " (H. 41)

For a nondimensional rotative speed of _2 = 1.0 and inlet axial velocity

of w I = 0. 08302, this results in an inlet incidence angle of i = 1.45 °.

The initial throughflow velocities, w, are made to vary linearly from

inlet to outlet where the trailing edge distribution is the one which resulted

from an earlier version of Run A-1 (see Section III. B. 1). These velocities

turned out to be approximately 7% low at exit due to failure to allow for

blade blockage (see figure III. 5). Therefore, this is equivalent to a

physical incompatibility in that "less comes out than goes in". The

method of star residuals, however, still finds a solution with minimum

total residual for the imposed boundary conditions. The remaining runs

in this section demonstrate that this inconsistency in the specified exit

velocity does not affect the basic nature of the resulting velocity

distributions.

The radial velocities, u, are distributed linearly from hub to shroud at

each axial station, so that they are estimated by

dr
U=W -

d_

dr

where the slope _ varies linearly from hub to shroud. The relative cir-
cumferential velocities are estimated by

dO
v=wr m

d_

dO
where .----- is an average, measured halfway between the blade surfaces at
each axial station. This is done in order to get a fair approximation of

the unknowns at the beginning of the problem. For the same reason, initial

pressures are calculated at each grid point from

-2goPf (r 2 _22+wl 2-u 2-v 2-w 2) (II. 42)P

which is a consequence of integrating the momentum equation (I. 12) along

streamlines with the above velocity components and p = 0 on the upstream

axial plane.
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The RMS reduction for a 25-cycle run of this problem is shown in figure

II. 13. Initial and final hub-to-tip distributions of area-averaged pressures

and absolute velocity components at the blade trailing edge are presented

in figure II. 14. The behavior of the mass-averaged performance parameters

shown in Figure II. 15 indicates that these stabilized after about 16

relaxation cycles. The remaining cycles served to effect local alterations
of the internal distributions to further reduce the value of RMS.

Note that the pressures in figure II. 16 indicate some loading at the leading

edge. This loading increases somewhat inside the channel and there is a

tendency to unload at the blade trailing edge. Had we extended the grid

several stations downstream of the trailing edge, this unloading would

have been stronger, as will be shown in the remaining runs.

Another effect which we learned about is a result of the relatively coarse

grid and high degree of obliqueness of the ( a , _ , _' ) - coordinate system

used (see Appendix A). The combination of low blade angle and large axial

grid distance A_ causes the "streamline distance"A_ between the

points to be about four times the circumferential distance/x_ between

them and about seven times the channel width. Therefore the distances

between points in a "star" are highly nonuniform and the finite-difference

formulae are not representative of the local partial derivatives (see

equation A. 3). A "reasonable" grid, therefore, would have required

twice as many points each in the radial and circumferential directions,

and about ten times as many axial stations; i.e. a 10 x 10 x 100 grid.

This would have extended computer running times beyond practical limits.

In spite of these remarks, however, we point to the relatively good

quality of the results which are attainable even with such a coarse grid
as we used.

In all of the preceding runs, the v_riables at each grid point were adjusted

in the sequence (u, v,w, p). We found by experimenting that considerable

savings in overall running time can be achieved by altering this sequence.

Thus, for the sequence (p,u, v,w) we noticed the running time per cycle

reduced by about 3% and the reduction of RMS values improved by about

14% per cycle. The result is an improvement of about 16% in the overall

RMS-reduction per time. Further improvement in performance of the

computer program was indicated when the sequence (p, w, v, u) was used.

Although we recommend this latter adjustment sequence - and this

sequence is used in all remaining runs of the three-dimensional method -

we believe that the optimum order of adjusting the variables depends

largely on the initial distributions. For each type of problem, therefore,

an adjustment sequence which shows an improved convergence rate may

be determined experimentally although ultimate convergence to the

minimum obtainable total residual (as discussed in Section 1I. A. 5) is
always assured.
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In view of the above observations, we next analyzed an inducer channel

of the same overall dimensions as the above one but with higher blade

angles. The grid we selected has 2.2 times as many points, and we

extended the flow field upstream and downstream of the blades by an

axial distance equivalent to approximately one channel width. This

is consistent with other numerical calculations of fluid flow fields (see,

for example, references 23 and 24). The geometry used for the remain-

ing computer runs is shown in figure II. 18.

The lead equation for the pressure surfaces of the blades of this inducer is

d_ _ 2

r tan B b - dO _' 21256 + ._09830 _
a c

(II. 43)

where _ = 0 at the blade leading edge. This gives blade tip angles of

12 ° and 24.5 °, respectively, at the leading edge (_ = 0.0) and the trailing

edge (z = 1. 62857).

The finite-difference grid includes three axial stations each upstream

and downstream of the blade system. The angle for the upstream stag-

nation surfaces is again calculated from equation (II. 41). With an inlet

axial velocity of w = 0. 17633, this results in an incidence angle of 2 ° at
the leading edge, which was chosen as a representative value for these
inducer calculations.

The initial throughflow velocities, w, are chosen so that mass con-

servation is satisfied one-dimensionally from inlet to outlet. As was

done in the case of the 6.2 ° inducer, the radial velocities, u, are

distributed linearly from hub to shroud at each axial station so that

h

where(dd-_h is the slope of the hub. The relative circumferential

velocities are given by

dO
v=wr_

d_
dO

where dz is an average, measured halfway between the blade surfaces
at each axial station.
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Initial values of pressures are again calculated from

Pf (r 2 _2 + Wl 2 2 2 2=_ -U -V -W )
P 2g o

(II. 42)

The downstream stagnation stream surfaces are initially selected so that

no energy is added to the flow downstream of the blade trailing edge. We

simulate this condition by requiring that V0 remain axially constant for

constant r. Since

V= V 0 - rl2

this is equivalent to requiring that

v

r remain constant. But

dO 1 v vA

d_ tan Bb w q
(1I. 44)

where A is the channel cross section area and q is the constant volume

flow rate. Therefore the stagnation stream surface angles are calculated
from

d0 - (r--_q
A (lI. 45)

i.e. the rate of change of angle with axial distance is proportional to

cross section area. Note that finally the only way to obtain no energy

addition by the stagnation stream surfaces is to adjust them and re-

compute until no pressure difference exists across them.

RunE-7:12 ° Inducer- 5 x 5x 22 Grid

The first run with the above described inducer channel was made for

an incompressible, lossless fluid. Figure II. 19 shows that the value

of RMS is still being reduced after fifteen relaxation cycles. As was

the case for Run E-6, however, we see that the values of relative

circulation (figure II.20) have reached their final levels by the eighth

relaxation cycle. In figure II. 22 we present a chronology of the hub-

to-tip distributions of the pressures and velocity components at the

inducer exit plane. The final pattern for these area-averaged quantities

has emerged by the 15th relaxation cycle.

The resulting hub-to-tip distribution of absolute circumferential velocity

V 0 is not one which would be expected from simple radial equilibrium
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solutions of inducers. For example, those of reference 6 canbe shown
to tend toward free vortex flow: V0 high at the hub and low at the tip.
(In subsequentruns we did achieve this. SeeFigures II. 23 and III. 6.)
The flow pattern of relative circulation counter to the direction of rotation
of the machine, however, was present in the distributions of the relative
velocity components. Part of this may be due to the fact that the circum-
ferential distance betweengrid points at the trailing edgeis approximately
3/5 of the channelwidth. Another reason may be the fact that the absolute
value of pressure is inconsequential in satisfying the equations of motion
(for an incompressible fluid) andthat only the local pressure gradients
needbe approximately correct (seeequations (II. 5) through (II. 8). To
test this hypothesis we made the following run for comparison.

Run E-8:12 ° Inducer - 5 x 5 x 22 Grid - Forced Pressures

The geometry and initial assumptions for this run are exactly the same
ones as were used for the previous run. During the relaxation procedure,

however, the pressures are forced to satisfy

Pf (r 2 ft 2 u 2 v 2 w 2)p = __ + wl 2 - _ _
2g o

(II. 42)

This requirement introduces no mathematical inconsistency, because, for

zero inlet pressure, no inlet whirl, no losses and an incompressible

fluid, equation (II. 42) applies exactly everywhere in the flow field. Each

time one of the relative velocity components is varied at a grid point

(see Section II. A. 3), the corresponding local value of the pressure is

immediately calculated from equation (II. 42). Therefore, Pi, j, k is no

longer an independent discrete variable.

Recalling the discussion of the take-up effect from Section II. B. 2, we

would expect the value of RMS to be higher for this run with forced

pressures than they were for the previous run, since D is lower due to

this elimination of Pi, j, k. This comparison is shown in figure II. 19.

However, figure II. 20 shows that the relative circulation at exit is closer

to the true value when the pressures are forced to satisfy equation H. 42

than when they are free to be adjusted independently. From figure II. 21

we see that the values of shaft power, Ps, and exit velocity head,

V2
, are essentially the same for these two comparative runs. The value

2go of the mass-averaged exit pressure head, (p_, settles at 0. 1635

for free pressures and at 0. 1590 for forced pressures. A one-dimensional

calculation with zero deviation predicts a value of 0. 1406 at the root-mean-

square radius, r -- 0. 869, at the blade trailing edge. The most prominent

effect of forcing the pressures to satisfy equation (II. 42) is seen in the hub-

to-tip distribution of V 0 (see figure II. 23). As was mentioned above, this
is the type of distribution we would expect for this problem.
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Figures II. 24 and II. 25 show a comparison of the resulting relative

velocity distributions on the blade surfaces for the two runs, Notice

that the numerical oscillations, present in the run where the pressures

are free, are almost absent in the comparable run with forced pressures.

This could be simply a grid-point density effect coupled with boundary

extrapolation influence. Comparison of the distributions of static pressure
on the blade surfaces is shown in figures II. 26 and II. 27. The latter shows

that unloading of the blades downstream of the trailing edges is shown very

definitely in the run with forced pressures.

Run E-9: 12 ° Inducer - 5 x 5 x 22 Grid - Two-Phase Flow

The purpose of this final run with the exact three-dimensional solution
method is to demonstrate that it will work for two-phase inducer flow

calculations. Our equation of state

i Pf , P-> Psat

P= pf

i + T* (Psat - P) ' p < Psat

(I. 7)

was easily incorporated into the computer program. Because of the two-

phase flow effects, equation III. 42) is no longer applicable, of course.

Again, exactly the same geometry and initial assumptions were used as in

the preceding two runs. The following parameters were used for the state

equation:

Pgat = O. 0

pf = 1.0

T* = 40.0

which simulates a flow of 36°R hydrogen or 450°F water in an inducer run-

ning at a blade inlet tip speed of 447 feet per second. Since the upstream

pressure is also zero, the hydrogen or water would be at the boiling point

upstream of the inducer inlet.

The RMS values for this five-cycle run differed from the corresponding

RMS values of Run E-7 by less than 0,002. At the end of the fifth cycle

the blade surface distributions of relative velocity (figure II. 28) are

essentially the same as those at the end of the 15th cycle of the comparable

incompressible run (figure II. 24), although the oscillations of some of the

distributions are somewhat reduced. This seems to indicate that these

oscillations are part of the numerical behavior for this size grid.
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Because the upstream stagnation surfaces, as we have selected and fixed them,

actually do work on the fluid, by the time the fluid reaches the blade leading edge

its pressure is already above saturation pressure. This is where the selection of

proper stagnation surfaces is crucial. The internal density distributions indicate

vapor in the flow region upstream of the blade leading edge. This vaporous region is

small compared to the entire flow passage. For a value of T*= 40.0 and an inlet

pressure equal to vapor pressure, we would expect a large portion of the passage to

fill with vapor (see table III. 1 and figure HI. 24}. The apparent unloading of the

blades, especially at the tip, is due to the fact that figure II. 26 shows the results of

15 relaxation cycles whereas in figure II. 29 are shown the results of only five cycles -

i.e. the solution has not been carried far enough to give the correct answers. The

rotational flow pattern for both the two-phase and the incompressible run are es-

sentially the same. All hub-to-tip distributions at the blade trailing edge, for example,

differ from each other by less than 0. 001.
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C. CONCLUDINGREMARKS ON EXACT METHOD OF SOLUTION

The foregoing sequence of examples demonstrates the capabilities of our numerical

approach to an exact method for obtaining three-dimensional solutions of general,
continuum fluid flows in turbomachinery. That the method gives valid answers is

empirically evident as we now review the results of these examples.

1. Review of Problems Solved

The paddle-wheel channel examples with lossless, wheel-type flow indicate that a

convergent solution is always possible -- the resulting root-mean-square (RMS)

residual for the incompressible case (run E-l) being much less than one percent.

While this capability for minimizing the RMS residual is borne out by all the other

examples, run E-2 (similar to E-l) illustrates it best by producing an answer of

1/10 of one percent, with no sign that this is remotely close the attainable minimum

(Figure II. 7). Furthermore, run E-2 shows that two-phase flow effects can be in-

cluded successfully -- and with no perceptible increase in computing time. Finally,

these two simple examples illustrate the deviations from the true answers that are

caused by discretization, i.e. by a finite number of grid points (3 x 3 x 3). Even

though the system of finite difference equations and other conditions can essentially

be satisfied in this special case, the solution to the comparable continuous problem

(infinite number of grid points) yields a different radial distribution of the pressure.

The three examples (runs E-3, 4, 5) of incompressible, irrotational flow in a paddle-

wheel channel illustrate the grid effects of typical problems. Here we observe the

numerical inconsistency of the (essentially arbitrary) linear extrapolations at boundary

points with the more complicated pressure and velocity variations there; i. e., the

RMS residual achieves a minimum (or nearly so) that is non-zero in each case. Even

though this residual is far enough from zero (Figure H. 9) for completely wrong answers

to be allowable by it, the results are fairly accurate (Figure II. 10). In fact, the

experiments that we conducted in runs E-4 and E-5 wherein we changed the problem of

run E-3 by extending the number of points and unknowns (without altering grid point

density) shows that a lower residual does not guarantee more accurate answers,

(unless it is sufficiently low): The additional adjustment of variables that was possible
in runs E-4 and E-5 illustrates this "take-up effect".

The foregoing discretization error is probably not dominant in runs E-3, 4 and 5, because

the cross-sectional density of grid points is about seven times greater than was the case

in runs E-1 and 2, (9 x 7 versus 3 x 3). The answers were acceptable -- even with the

relatively high RMS residual results. We used approximately correct values as initial

assumptions, and starting with this lack of bias is probably the way to obtain reasonable

results when the minimum obtainable RMS residual is not low enough to guarantee

them. The numerical inconsistencies responsible for this inability to obtain such

a minimum would be less dominant for a greater density of grid points.
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The sample inducer examples that we studied in runs E-6 through 9 had no parallel
sets of previously knownanswers by which the results could be judged directly --
as was possible with all the other cases. However, results for similar geometries
using acceptedsimple radial equilibrium methods, (as was donein reference 6, and
by us in Section III,) give an indication of what to expect. The 5 x 5 grid point cross-
section with the many additional points obtained by reason of the greater channel
length {up to 22 cross-sections) typical of inducers, yield the kind of answers that
would be expectedfrom our knowledgeof the irrotational flow results for the paddle-
wheel channel, (runs E-3, 4, 5). These inducer problems yield minimum RMS residuals
of order similar to that of runs E-3, 4, 5. (cf. Figures II-9, 13, 19). Although the
grid-point cross-section is 5 x 5, (vs. 9 x 7 for runs E-3, 4, 5) the channel inclination
angle is quite shallow andyields the higher grid-point density that probably accounts
for the differences betweenthe inducers andthe paddle-wheel channel.

However, a greater grid point density is neededto avoid the further numerical errors
that were probably introduced by using the convenient arrangement with highly oblique
intersections of the coordinate surfaces, (Figure A-2). This results from the fact
that inducer channels are inclined at sucha low angleBto the tangential direction.

The foregoing conclusions about the take-up effect apply to the differences between the
12° inducer results for free vs. forced pressures, (runs E-7 vs. E-8). The latter
problem had fewer unknownsand thereby accountsfor the higher RMS residual,
(Figure II-19). Here again, these residuals were high enoughin both cases to allow
wrong answers, but the forced-pressure case seems to have insured reasonably accurate
answers. In effect, biasing the pressures toward results that are consistent with the
velocities reduces the grid-point density that is required; however, it restricts the
problem to the lossless case -- which is what we solved in all our exampleswith the
method.

Finally, we could have obtained more accurate answers in the inducer examples if we
had adjusted the initially estimated upstream anddownstream extensions of the blades
to unloadedpositions as the solutions proceeded. The errors that we introduced by not
doing this are probably small compared to those that are causedby the coarse-grid
effects. However, the two-phase flow results of run E-9 are influenced by the fact that
the slight loading that did occur on the upstream stagnation stream surfaces prevented
vapor from forming in the locations where its effects are knownto be most pronounced.
Here againwe have demonstrated that two-phase flow calculations introduce no significant
changes in computing time and complexity.

2. Recommendations for Future Work

Since the numerical accuracy of this exact method appears to have a direct relationship

with the density of grid points, one must provide the attendant necessary computer

storage space and running time to reduce the residuals sufficiently, (see Appendix C).

This is characteristic of any valid finite difference technique.
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A review of the data that we obtained in checking the method indicates that in its present
form the program (AppendixC) would probably give satisfactory results if onewould
apply it to any typical inducer channel as follows..

a) Use a grid of 10x 10 x 50 points, which compares to 5 x 5 x 22 that
we used.

b) Extend the stagnation stream surface boundaries about one channel
width upstream and downstreamas we did it runs E-7, 8, 9.

e) Adjust the locations of these surfaces after each set of ten relaxation

cycles to maintain them in an unloaded condition; i. e., there should

be no pressure differences across them at the same radial and axial

locations.

d) Change the subroutine ADJ (Appendix C) to force the pressures to

satisfy equation H. 42 as we did in run E-8. This eliminates the
treatment of losses in detail; however, other expressions similar to

equation II. 42 can be devised to distribute losses arbitrarily and to

handle two-phase flow in combination with the barotropic relation

(equation I. 7) -- subject to the inlet conditions of uniform pressure and
zero whirl.

As here proposed, the problem may yield a satisfactory solution in less than twenty-

five relaxation cycles at a cost of about one half hour of computing time per cycle,

(see Univac 1107 data in Appendix C). Proposal (d) on "forcing" the pressures may

not be necessary if more computing time is allowed. It is simply a way of keeping

the problem within present limits of computer storage and calculation times, as the

general case would require even more grid points than 10 x 10 x 50 for an accurate
solution.

Further work on the method itself could yield the reductions in calculation time that

would allow the use of finer grids with the general problem (pressures not forced)

on existing computers. A method for automatically adjusting the stagnation stream

surfaces would save the time required to do it by hand in (c) above. As concerns the

computational algorithm itself, lower RMS residual values could be attained by treating

the wall boundary conditions (equation II. 9) as additional residuals and by independently

adjusting all velocity components at boundary points, (see Appendix A).

More advanced residual reduction techniques could be introduced to accelerate the

convergence rate, which might be partly accomplished with the existing program

by a judicious selection of weights to be assigned to the various residuals at each

grid point. As in the case of all developments and modifications in this method, such

improvements would require the closest cooperation between the fields of numerical

mathematics and fluid dynamics.
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SECTIONIII

APPROXIMATE THREE-DIMENSIONAL SOLUTION

A. METHOD OF SOLUTION

This section gives the assumptions and method for obtaining a rapid, approximate

solution to the system of equations and boundary conditions presented in Section i,

The resulting program (Appendix D) can obtain answers in about a minute on existing

computers and may therefore be used for purposes of assisting in design evaluations.

However, such answers cannot describe the detailed three- dimensional flow patterns

that include, e.g., blade loading at the leading and trailing edges and relative cork-
screw motion within the passages. Any basic study of the inducer flow field must

be made by the exact method of the preceeding section.

The philosophy for this approximate approach is primarily that of reference 1 in that
several assumed two-dimensional solutions of the blade-to-blade field are coupled

with a complementary two-dimensional meridional solution. As reasonable approxi-

mations for inducers, we have neglected the effects of streamline curvature in the

meridional plane and of blade forces normal to the streamlines in that plane. Also

presented is the form of the results which can be correlated with other theoretical or

experimental data.

1. Restrictions of the Analysis

We imposed the following restrictions on the fluid motion to obtain an approximate

solution:

a) The fluid flows through the inducer (figure HI. 1) in annuli; i. e., in the

spaces between stream surfaces of revolution formed by rotating about
the axis of rotation the meridional projections of the streamlines of such

a flow. (Unless otherwise noted, the term streamlines will hereafter refer

to these projections. )

b) The stream surfaces have initially fixed locations at the leading edge of

the inducer blade (figure III. 1, view b). The upstream set of boundary

conditions is applied at that leading edge, thus precluding backflow.

c) Average relative velocity and pressure conditions exist at mid-passage
from blade to blade, (see figure II. 2). These averages are results of the

meridional solution, and they are the quantities employed (with additional

assumptions) to determine the blade-to-blade solutions. Where two-phase

flow exists, we allow the meridional and blade-to-blade solutions to be

dependent on one another.

d) The direction of the average relative velocity in a given annulus differs
from that of the blade meanline in the blade-to-blade plane (figure III. 2)
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by a predetermined deviation angle. In order to close the relative velocity
diagrams at exit, this angle is assumedto vary approximately with the
sixth power of length from the zero inlet value to the imposed exit value on
that annulus. The componentof direction in the meridional plane is that
of the mean line betweenthe two boundingstreamlines {figure IH. 1).

The task is to find the equilibrium locations of the streamlines along each of several
fixed straight-line meridional quasi-normals in turn at successive stations from inlet
to outlet. At station 1, the blade leading edge, no suchbalance is required, as the
locations there are fixed by restriction (b).

Although the relative corkscrew motion that can occur in a real flow is precluded by
restriction (a), Stanitz showed(reference 12) that this superimposedmotion has little
effect on the velocities and pressures of an essentially single-phase lossless flow in
the interior of the machine. Furthermore, we foundthat the total amount of this
relative rotation experiencedby the internal fluid seldom exceedsone-half turn
becauseof the low work level of inducers. Finally, at low NPSH, the inlet region of
an inducer commonly unloads due to two-phase effects, which would then make
restriction (a) more acceptablethere.

For the low blade-to-blade loadings of inducers, restrictions (c) and (d) shouldbe
reasonable. The deviation angle distribution of (d) amountsto negligible deviation
except in the latter third of the blading, if imposed. In this way, the blade exit unloading
phenomenoncan be approximately simulated.

This reasoning simply meansthat our approximate solution ought to give a fair indication
of inducer performance. However the three-dimensional (exact)method employs none
of these restrictions; and, when applied with sufficient accuracy, it is the ultimate
standard for a final design. Furthermore, basic observationsof loss distributions and
their effects canbe understood best in the light of an exact solution -- even one of a
lossless flow.

2. Scalar Equations and Boundary Conditions

The foregoing restrictions lead to a natural set of varying directions in which to apply

the equations of motion, using the (r, 0, z) right circular cylindrical coordinate system
(figures HI. 1, 2):

a) The relative flow direction h, which is that of the foregoing restriction (d).

b) The direction of the straight-line meridional quasi-normal n'.

c) The tangential or blade-to-blade direction 0.

It is in these directions that we now express the three component equations of the vector

momentum equation (I. 2 or I. 4). Since his the relative stl_eamline direction, we use

the streamline momentum equation (I. 12) of Section I. A. 2:
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godp(02r2)- d -d - dL (m. 1)
p 2

In the n' direction, we have the following simple normal equilibrium equation:

1

go dp VO2 cos
_ (HI 2)

p dn' r

and in the 0 direction, we use the moment of momentum equation in terms of the average

velocities and blade surface pressures, (reference 3, Appendix; and reference 15,

p. 287):

go Pp - Ps d(r V0) (HI. 3)
p 0s _ _p= Vm dm

Note that equation IH. 3 is an integrated form of the scalar momentum equation in the

0 direction (equation II. 2), which is

d (r VO) (III. 3a)0P_ P Vm d--_
O0 go

We require continuity throughout each annulus as follows:

dw= d[prAn (0s- 0p) _b Vm] =0
(III. 4)

Together with boundary conditions and equations (I. 7) and (I. 13) for two-phase flow and

loss effects when required, equations (III. 1,2, 3, 4) constitute the complete set of

relations used in this method.

We note that equation (IH. 2) is obtained from the complete normal equilibrium equation

for this annulus-type flow problem (reference 4, p. 29):

VO2 V_ 2 + _B* d (rV0)
go 0P _ cos_ --_7m
O 0n r r c r dm

Pressure Centrifugal Streamline Blade Force

Gradient Action Curvature

(III. 5)

where

* 00 00
B= r-_ sin _' - r _ cos_ (HI. 6)
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Furthermore, (see figure HI. 1)

dp 0 P dn 0 P dm
-- +

dn' On dn' 0m tin' (HI. 7)

If the quasi-normals are approximately perpendicular to the streamlines, we see that

the last term of equation (HI. 7) may be neglected and that dp ,._ dp Omitting the
"5"-2-_,_dn "

effects of meridional streamline curvature and of the bladed_orces only in the quasi-

normal direction; i.e., the last two terms of equation (HI. 5), we then obtain the simple

normal equilibrium equation (III. 2). Provided we take the care to specify the (fixed)

locations of the quasi-normals properly, the fairly axial, long, straight meridional fields

and nearly radial-element-blades of inducers should make this omission of terms less
serious.

In accordance with the restriction in Section II. A. 1, we summarize the boundary
conditions on this problem as follows:

a) The wall boundaries (Section I. B. 1) extend only from the blade leading to

trailing edge. Beside the blades, hub and shroud, these also include the

stream surfaces of revolution (streamlines), whose locations are fixed at

the upstream boundary.

b) The upstream throughflow boundary (Section I. B. 2) is at the blade leading

edge. There we specify for each annulus the respective inlet values of p,

V m and V0. The direction of Vm is determined by the given slope of the
blade leading edge (not necessarily a straight line in the meridional plane);

therefore, Vr and V_ are implicitly specified. No tangential variation of
these quantities is assumed.

c) At the downstream throughflow boundary (the blade trailing edge), we

specify the respective predetermined values of the tangential average
exit deviation angle Sex for each annulus. The exact locations of these

annuli result from the solution; however their positions can be estimated

closely enough to find the necessary values of _ex if its distribution from

hub to shroud is not uniform. The program as presently constructed

requires that a quasi-normal coincide with the blade trailing edge, and

therefore, that this edge be a straight line in the meridional plane.

3. Meridional Streamline Balancing Procedure

Determining the equilibrium positions of the meridional stream surfaces of revolution

chosen at inlet is the object of this approximate method. We identify the coordinates

of each streamline by the index (subscript) i where
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1 < i < qi

Hub Shroud

Similarly, each quasi-normal is identifiedby the index (subscript)j (theStation number)

where

1 < j < qj

Blade Blade

Leading Trailing

Edge Edge

All fluid variables (p, p, W, V) are associated with annuli, not the streamlines;

i. e., they are assumed to exist on the mean line of annulus i' which lies midway

between streamlines i and i + 1. Thus the total number of annuli is qi - 1. The

same identification applies to the average coordinate quantities n'i', j, (with

corresponding ri', j, and _i', j, ) which locate the mean line of annulus i'. The
computational procedure begins from the specified data by calculating the mass flow

rates w i, and relative velocities Wi', j, for each annulus i' at the blade leading edge

station (j = 1). We then proceed as follows at station 2 (j = 2):

a) We estimate the streamline positions n'i, j, , ri, j and _i, j on the

quasi-normal j by assuming the same spacing proportions as at

j - 1. Next we find the corresponding channel angle data 0s, i', j and 0p, i ', j
from a blade subroutine for the given blade shape and thickness,

which includes boundary tayer displacement thickness. From this

and similar data at stations j - 1 and j + 1, we obtain the relative

flow angle Bi', j in the plane tangent to the mean stream surface of
each annulus i', allowing for deviation, if any, (see figure III.2).

b) Applying the continuity equation (Ill. 4) in finite-difference form we

obtain the average velocities Vm,i, ' j as follows:

V wi'
m, i',j =

pr An (0 s - Op) ] i',j

(III. 8)

With the angles f_ we now obtain also the velocities V 0 and W. If we
are not restricted to an incompressible analysis, this and the following

step are coupled to the blade-to-blade solution in the portions of the

machine where vaporization occurs. In such a case, the value of

P i', j is unknown and must be found from an iteration of equations HI. 8

and III. 9 with steps (a) through (f) of the blade-to-blade solution for two-

phase flow, (see Section HI. A. 4).
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c) Next we obtain the averagepressures Pi', j from the streamline momentum

(equation (HI. 1)) expressed in finite-difference form:

Pi',j = Pj_I 2g o -2- rJ 2 _ rj-12 1+ _ j2 _ Wj_I - dL (HI. 9)

i'

d)

where dL is similarly expressed by finite-difference forms of equations

(I.13, i4, i5).

Now we form the streamline unbalances Ui, j for all i from the

normal equilibrium equation (III. 2), (i = i):

U. = Pi' - Pi'-i _ (Pi' +Pi'-l) @,iZ + V_,i' - 1 (III. lO)

l, j n'i' - n'i' -1 4go ri/cos 7'

where no U's are needed for the hub and shroud streamlines (i = 1 and

qi respectively). These indicate the extent of error in the original

estimates of the streamline positions in step (a).

In the following steps, we adjust the streamline locations n'i, j at station
j to satisfy the same accuracy criterion developed in Section II. A. 4.

Here, we require (similar to relation (II. 19) that the unbalance U be
limited as follows:

Pf

U < _ (l_ 2 rt) g---_-

where _ is some small number.

The relation of this error to the overall results is less serious than the

discussion of Section II. A. 4 would indicate. It affects the hub-to-shroud

distributions, but not the accuracy of the inlet-to-outlet annulus results in

themselves. Continuity is satisfied in each annulus, and the correct pressure

rise from inlet to outlet of it will result if on the average each annulus is

balanced with relation to the others. Any cumulative effect due to bias in

the unbalances is small, and in the lossless case it is non-existent -- the

overall pressure rise error then depending on bias in the unbalances (due

to _0) at the exit station only. Note that "unbalance" U is an error in
d__p_,the normal pressure gradient (i. e. _r in typical inducers).dn t

The adjustment sequence at station j follows:

e) If all the Ui, j satisfy condition (IH. 11), we consider the problem solved
from the inlet to this station j. In such a case, we proceed to the next

(Ill. 11)
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station (j + 1) and repeat the steps just outlined, beginning with step (a).
If, however, this required accuracy doesnot exist, we execute the following
steps starting with streamline i = 2 at station j:

We determine a new streamline position (n' + An'h, j by the second order

Taylor approximation, (see equation (II. 17)):

n  n=n 0n,---y/
(HI. 12)

where the U derivatives are evaluated by moving the streamline by

amounts ± _n' and executing ste_s (b) through (d) for each such movement.

In the event that the U versus n' relation is not sufficiently second order

for the adjustment given by equation (HI. 12) to cause a reduction in Ui, j,

we accept whichever result of the + _n' calculations did cause a reduction,

if indeed one occurred. (This alternate method was necessary in the two-

phase flow cases. It does not force a wrong answer but merely insures
that the unbalance U will be reduced in cases where the usual method cannot

accomplish this.) If required to obtain U reduction, $n' is reduced as in

the method of successive variations (Section H. A. 3) at the end of each

cycle.

g) We repeat step (f) for the next streamline, i = 3, and so on through i = qi - 1,

which completes one (hub-to-shroud) iteration cycle. Then we return to

step (e).

In certain cases where a very small value of • in equation III. 11 would

require may iteration cycles, the number of cycles can be limited and the

results accepted at the accuracy then achieved, (see Appendix D).

4. Blade-To-Blade Solution

Except for cases where pressures in the blade-to-blade solution are lower than the

vapor pressure Psat, there is no influence of this solution on the meridional one of

the foregoing section. For two-phase solutions, we make a blade-to-blade check for

vaporization each time an average density Pi', j is required by steps (b) and (c) of
that section. The blade-to-blade solution associated with a given station j is actually

carried out at j' which is halfway between j and j - 1, (see figure III. 2). The results

are the fluid relative velocities Wp, i',j' and Ws, i',j', pressures pp, i',j' and Ps, i', j',

and densities pp, i', j', and Ps, i', j' on the pressure and suction sides of the channel,
respectively.

The meridional field does of course determine the blade-to-blade solution, and the

key to this is the moment of momentum equation (III. 3). To use simply this equation

two assumptions are required; viz., a 0 distribution of one of the variables and.a
statement about the accumulated losses versus 0. For the first, a linear distribution

p(0) (reference 2) or W(0) (reference 1) is generally assumed. Both of these give
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nearly the sameresults for the light loads in the incompressible case. However, in
the two-phase case the linear pressure approach causesunrealistically high W's on
the non-liquid suction side of the channelbesides specifying anappreciable pressure
variation over a region that is essentially vaporous (reference 8, p. 4-16). Sowe
chose the linear velocity model, which best fits all cases. For the secondassumption,
the only convenient approach is to state that fidL along all relative streamlines in

annulus i from inlet to station j' is uniform. Then the streamline momentum equation

(I. 12) holds on all streamlines from blade to blade (r = constant), and it may be em-

ployed together with the state equation (I. 7) to relate the 0 distributions of the variables

p, W and p.

Having chosen the linear velocity model, we next obtain the relationship between W(0)

and the velocities of the meridional solution which are averages. As in reference 1,
we assume

W +W )s p = Wi',j' (HI.13)2
i',j'

The average velocity

W.+ )
J Wj-1 (HI. 14)

Wi',J ' = 2 i'

does the pressure, Pi' "' lies at mid-passage, where _ is defined similarly. Inas
,J

accordance with the foregoing assumption about the losses, we now combine the moment

of momentum equation (IH. 3) with the following form of equation (I. 2) for use in the 0

direction (r = constant):

go dp
- W d W (Ill. 15)

p

Assuming

PP- Ps dp

0 s - Op dO
(HI. 17)

we obtain

-_-] j, mj - mj_ 1
T, !

i'

(III. 18)
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where, by assumption, i', j' = constant with 0, and with equation (III. 13) we
now have the blade-to-blade velocity distribution. Applying equation (III. 15) and

remembering that the mid-passage value is p i', J', we immediately obtain the

pressure distribution if p is constant. This completes the blade-to-blade solution

for the incompressible case.

For two-phase flow, we proceed as in the incompressible case for all portions of the

blade-to-blade region in which p > Psat, (see figure (HI. 3). In the portion where

P < Psat, we determine the density distribution from a combination of the two-phase

state relation (I. 7) and equation (IH. 15); and the pressure on the blade surfaces is

similarly calculated. There are various forms of these combinations, depending

upon how much of the passage is occupied by liquid or two-phase fluid, (see figure

HI. 3). This completes the blade-to-blade solution for the two-phase case.

In the course of the meridional solution (Section III. A. 3) steps (b) and (c) required an

average Pi', j that can be obtained only from an iterative portion of the blade-to-blade
solution at station j' when two-phase flow exists at j'. Once the final, correct Pi',j

is supplied by this iteration for the balanced streamline positions at station j, the
final blade-to-blade solution is made as outlined in the preceeding paragraphs for both

the incompressible and two-phase flow cases and for all annuli at station j' The

iterative steps for obtaining Pi', j are as follows:

a)

b)

c)

d)

Assume Oi,,j = Of

Execute steps (b) and (c) of the meridional solution.

Obtain the blade-to-blade density distribution from the applicable comki-

nation of equations (I. 7) and (HI. 15).

Calculate the blade-to-blade average density:

e) Check continuity at station j' as follows: *

(HI. 19)

=? Pi',j +Pi', j-1 (III. 20)
"Pi',j' 2

* A better form of continuity check than that of equations (III. 19 and 20) is simply that

s ? Pi',j+Pi',j-I Wi',j' (Os - Op) (HI 21)p Wd0 '- 2
Op i',j'

This would avoid the slight continuity errors introduced by the concept of an average

density "_ at station j' in equation (III. 19).
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0 If the difference between these averages is greater than. 001 of the

right hand side, we reduce Pi', j by a small amount and repeat steps
(b) through if). If the difference is less than. 001, we accept the current

value of Pi',j for use with the meridional solution, (steps (b) and (c)).

Figure III. 4 shows the kind of variation that results for each side of equation (HI. 20)

as the assumed average density Pi',j is changed from Pf to successively lower values.
The iteration procedure contains safeguards to avoid the solution bb (figure III. 4) for

negative blade loading and to handle properly the choked annulus case for which no

solution exists. First, if solution aa exists, it will be reached first as the blades unload

with decreasing values of the assumed Pi', j. We found that if no solution aa exists,
there will be no bb solution either, since a negative blade loading causes a reduction

of average pressure from station j - 1 to j with corresponding increased vaporization.

So, if no solution exists; i. e., if the annulus is choked for current positions of the two

bounding streamlines, this fact is noted by the computer, andwe use the value of Pi v, j

for essentially zero blade loading (specifically, the value obtained at the point in the

iteration for which V 0 = 0) in steps (b) and (c) of Section IH. A. 3. If the streamline

adjustment sequence ultimately yields no balanced positions of the streamlines at

station j (steps (e), (f) and (g) of Section HI. A. 3) for which all the annuli are unchoked

at j'; an appropriate message is printed at the end of a maximum allowable number of

balancing cycles, and the calculations are discontinued.

5. Form of the Results

The procedures for obtaining the meridional and blade-to-blade solutions yield sets of

hub-to-shroud results at each station j and at jr; i. e., respectively along and between

the quasi-normals of the meridional solution from inlet to outlet. At j we give the

resulting set of streamline coordinate locations r and _ and the final unbalances U.

The set of average annulus values W, Vm, Vr, V 0, V_, p and pare each also given

for j. At j', we give the blade-to-blade results for each annulusat the blade surfaces

and at mid-passage; viz., Wp, Ws, W, pp, Ps, _, PP, Ps; and _, which does not lie
at mid-passage, (see figure III. 3) and equation (III. 19)).

At the blade trailing edge (j = qi) we also calculate blade element performance data and

finally the overall performance of the machine. The blade element data applies to fluid
in each annulus and is calculated as follows:

a) Total head loss coefficient:

I / 2 1 2v02 1v01 p2 pl
go go P2 P1 2 go 2 go /

= 2

wt, 1 / (2 go)

(III. 22)
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b) Annulus efficiency:

_i' = p_ _1 v_ Vl_)
P2 Pl + 2go 2go

U2 V0, 2 U1 V0, 1

go go i T

(IH. 23)

The overall performance is calculated from the proper averages of the

annulus (i') data at inlet and outlet:

a) Mass flow rate:

qi -1

w T = i__l_ w i (III.24)

b)

where the w i are given by equation HI. 4 for use in the program
calculations.

Mass-averaged total head rise

qi- 1 V2

E (_ _+i'=l P-2 Pl 2go
AH =

VI2 )i'
2go

w T

w i ,
(III. 25)

c) Mass-averaged pressure (calculated at inlet and at outlet):

qi-1

E Pi'wi'
i'=lm

p=

w T

(III. 26)

d) Mass-averaged absolute velocity head calculated (at inlet and at

outlet): qi- 1

Z (Vm +VOW)i'i=l 2go

2go
w T

(HI. 27)
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e) Torque:
qi-i

Tq- 1 Z
go i=1

(r2 V0, 2 - rl V0, 1)i'
w i , (III. 28)

f) Shaft power input:

Ps = l} Tq (III. 29)

g) Overall efficiency:

w

qi-1 2 2

i,_l (P2 Pl + V2 VI t"= _2 Pl 2go 2go i'wi'

Ps

(m. 30)

Observe that the overall efficiency -_ is equivalent to an energy average

of the elemental efficiencies _i,.

B. EXAMPLES AND RESULTS

The approximate method was used to solve a series of problems on the same variable-

lead inducers to which we applied the exact method in Section HI. B. 3. This section

presents the results for the 6.2 ° and 12 ° inducers - which are described in figures II. 12

and II. 18, respectively - for (1) incompressible, lossless flow, and (2) other runs with

loss and two-phase flow. In table III. 1 we list the representative runs reported in this

section; although we made some additional runs to obtain more data for the conclusions

of Section IV. As in Section II. B we performed all calculations nondimensionally,

according to the system presented at the end of the list of symbols.

1. Incompressible Results and Correlations for Lossless Flow

We now compare the results of the approximate method of solution with those of the

exact method, {Runs numbered A and E, respectively), using the following data from
table III. 1:

a) 6.2 ° Inducer:

Runs A-1 and E-6

Figures III, 5, 7, 8
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b) 12 ° Inducer:

Runs A-10, E-7 and E-8

Figures III. 6, 9, 10, 11, 12, 13

On each inducer, we used an 8 x 16 field; i. e., one with eight stream-

lines including hub and shroud, and sixteen stations including the blade

leading and trailing edges. Because of the special geometry we used

equally-spaced radial lines for the quasi-normals at each station. The

eight streamlines were equally spaced at station 1. Refer to figures II. 12

and II. 18 for geometrical details, including the axial locations of the

stations.

The overall performance data also appears in table III. 1 in terms of the static pressure

rise coefficient _I,p, total head rise coefficient _I,, power coefficient Ps and overall
efficiency -_ . These are the non-dimensional values of the corresponding quantities

presented in Section HI. A. 5. The corresponding data for the exact methods of solution

of these two inducers is also given (from figures II. 15 and II. 21). We obtained a fairly

close correlation of these results and the approximate ones {Run A-10) for the 12 °

inducer. Lack of such a correlation for the 6.2 ° inducer is probably the result of a

7% error in the fixed outlet throughflow velocity distribution that we made in applying

the exact method, (see description of Run E-6 in Section II. B. 3).

This difference is more clearly shown in the radial distributions of velocity and

pressure at the blade trailing edge in figure III. 5, especially for the Vz component,
which distribution was fixed in Run E-6. The unusual V0 distribution of run E-6

isprobably due to the grid effect. Figure III. 6 for the 12 ° inducers shows close cor-
relations bet_veen Runs A-10 and E-8, the latter being the forced-pressure case of the

exact method, (see theRun E-8 discussion in Section H. B. 3). Because the quasi-

normal direction n _ is radial, equation III. 2 becomes that for simple radial equilibrium;

so, we expect this governing equation of Run A-10 to give the type of V0 and V_ distri-
butions shown for this radial-element-bladed inducer. Figure 2 and equation 13 of

reference 6 show that the V0 distribution for lossless flow is essentially free vortex.

As we compare these results, we must keep in mind the high numerical accuracy that

we were able to achieve with the approximate method as compared to that of the exact

method of analysis, {Uma x vs. RMS residual). The overall numerical error for a

given RMS residual (an average) can be higher than the product of it times the length

of the inducer, (see Section II. A. 4 and equation II. 20); but this error for a given

Uma x is of order less than Umax times the radial length of passage at inducer exit.
(Refer to the discussion in step (d) of Section HI. A. 3, and note the negligible differences

between the rein lts of the runs in Table III. 1 for Umax = • 01 and. 001. ) Note

however that high numerical accuracy of an approximate method does not guarantee

exact results. On the other hand, evidence of tests is that the simple normal (or

radial) equilibrium assumption used in the approximate methods is a reasonable basis

for judging results. Finally we must remember that the numerical inaccuracies of the
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coarse grids that we used for the exact method do cause errors, but that this does

not invalidate the method; (see the discussion at the end of Section II).

The blade surface relative velocity and pressure distributions at hub and tip from

inlet to outlet are shown in figures III. 7 and HI. 8 respectively for the 6.2 ° inducer.

Blade-to-blade differences are generally comparable for A-1 and E-6. (See figures

H. 12 and II. 18 for station locations). For the 12 ° inducer similar correlations of

Run A-10 appear in figures III. 9 and III. I1, with the free-pressure run E-7, and in

figures III. 10 and III. 12 with the forced-pressure run E-8. The absence of deviation

allowance in the approximate run A-10 could account for the high loads obtained by

it at exit. The extension of the flow analysis into the downstream region in the runs E-7

and E-8 might be responsible for some of the unloading observed at exit, especially

in figures HI. 10 and III. 12.

Finally, for the latter three runs, figure III. 13 gives the correlation for the distributions

of pressure and relative velocity from blade to blade at constant radius and axial position.

This data is shown for a point halfway from hub to shroud in the interior of the 12 ° in-

ducer. Here, as in the radial distributions at exit, the forced pressure and approximate

runs (E-8 and A-10) correlate better; although, there appears to be a persistent kink in

the velocity distributions obtained by the exact method. This needs to be distinguished

from the approximate approach which assumes a linear velocity distribution from blade
to blade.

This completes the presentation of results by the approximate method which are directly

comparable with those of the exact method. The two-phase run E-9 by the exact method

requires changed positions of its upstream stagnation stream surfaces (so that they are

unloaded) in order to obtain a solution with which we could correlate comparable approxi-

mate results.

2. Effects of Two-Phase Flow and Losses

We made two sets of runs on the 6.2 ° and 12 ° inducers to investigate the effects of the

loss relation (I. 13) and the barotropic vaporization equation II. 7). These runs are
summarized in table HI. 1.

First we compare the foregoing incompressible, lossless runs with those for incom-

pressible flow with loss

6.2 ° Inducer: Runs A-3, 4, 5 in figures III. 14, 16, 17 are compared with

Runs A-1 and 2 which are corresponding results for no loss.

12°Inducer: Runs A-12, 13, 14 in figures III. 15, 16, 18 are similarly

compared with Runs A-10 and 11.

We found that a 4 x 16 field gives the same results as does an 8 x 16 field -- within a

very small error. The exit radial distributions of figures HI. 14 and III. 15 show this for

the 8 x 16 runs A-l, 3, 10, 12, which compare with the 4 x 16 runs A-2, 4, 11, 13
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FOR INCOMPRESSIBLE, LOSSLESS FLOW IN 12 ° INDUCER, SHOWING
CORRELATION WITH EXACT METHOD FREE PRESSURE RESULTS.
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FIGURE III. 13. BLADE-TO-BLADE DISTRIBUTIONS OF PRESSURE AND

RELATIVE VELOCITY, SHOWING COMPARISON OF EXACT AND

APPROXIMATE METHODS. Incompressible lossless flow in 12 _

inducer at the central interior point, _ = .7600 and r - .7556.
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respectively. Because of this accuracy and a greatly reduced computing time, all

approximate runs reported employed a 4 x 16 field, except for A-l, 3, 10, 12. The

approximate positions of the resulting three annuli are shown in figures HI. 23 and

III. 24.

We define the parameter that determines the variation in loss as the machine Reynolds

number:
2

_rt,1
Rm =" v (HI. 31)

Table III. 1 shows the two values of R m that we used. R m -- 2.5 x 107 results if
either inducer has a 5.37 inch inlet tip diameter and pumps liquid 36°R hydrogen

at 9,550 rpm. At 19,100 rpm, this givesR m= 5 x 107 . Similarly we get

2.5 x 107 pumping 267°F water at 9,550 rpm with a 6-inch diameter inlet. The

resulting Reynolds number effect, (cf. runs A-4 and A-5 in figure IH. 14), is notice-

able for the 6.2 ° inducer, which has a large solidity and therefore much skin friction

loss (equation I. 14). For the 12 ° inducer, which had much less solidity, the difference

between runs A-13 and A-14 is barely discernable in figure III. 15 and the overall

performance data of table HI. 1. This frictional difference between the two machines

also accounts for the much greater effect of any loss on the results for the 6.2 °

inducer which had about 70% efficiency as compared to 95% for the 12 ° inducer.

Especially noticeable is the change in exit velocity distributions caused by losses,

(figure III. 14).

The differences between the 6.2 ° and 12 ° inducers for these incompressible loss cases

is seen in another way in figure III, 16 which gives the corresponding blade element

data. NASA test results (reference 31) and a 12 ° constant-lead inducer are given for

qualitative comparison purposes. Our resulting theoretical distributions of loss

coefficient _ appear to be qualitatively correct. The NASA inducer has a high -_

at the tip, probably because of tip leakage and secondary flow losses and maybe because

of the low blade angle at outlet as compared to the 12 ° variable-lead inducer (figure

II. 18). Our loss coefficients (equations I. 14 and I. 15) may need to be increased and

distributed differently to give accurate results. (See the discussion in Section IV. )

Figures III. 17 and III. 18 show the loss effects onblade surface velocity and pressure

distributions. Here the data is given simply for the mean annulus, the location of which

changes very little with the different solutions, (figures III. 23 and III. 24). The same
differences between the 6.2 ° and !2 ° inducers are evident here also.

Next we present the comparisons of these incompressible, loss runs with those for

two-phase flow with loss as summarized in table IH. 1.

6.2 ° Inducer: Two-phase runs A-7 and A-9 are compared with

incompressible run A-5 in figures III. 19, 20, 21, 23.
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FIGURE III. 14. EFFECT OF LOSSES ON RADIAL DISTRIBUTIONS OF OUTLET

VELOCITY AND PRESSURE FOR INCOMPRESSIBLE FLOW IN 6.2 ° INDUCER,

Note accuracy of results of runs with three annuli (4x16) as compared to those

for seven annuli (8x16). Also note Reynolds Number effect in runs with loss.
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FIGURE III-15. EFFECT OF LOSSES ON RADIAL DISTRIBUTIONS OF OUTLET

VELOCITY AND PRESSURE FOR INCOMPRESSIBLE FLOW IN 12 ° INDUCER.

Note close correlation of three-annulus (4x16) and seven-annulus (8x16) results.

Also note Reynolds Number effect.
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FIGURE III. 16. COMPARISON OF INCOMPRESSIBLE FLOWS WITH LOSS FOR

6.2 AND 12 ° INDUCERS. RADIAL DISTRIBUTIONS OF OUTLET ANNULUS

EFFICIENCY AND LOSS COEFFICIENT. Also shown are experimental results

for a fiat plate 12 ° NASA inducer with a constant hub-to-tip radius ratio•

112



w v

Run

No.

O

A-2

[]
A-5

Blade
Surface Description

Pressure

Suction

Pressure

Suction

No Loss

Loss

R m = 2.5 x i0?

0.8

o
o
v--4

_0.7

¢9

0.6

0.2

_0.1

4

.... _ 0 0 _i_,,,0-_. 0 ,,.,, C3]

o ,.,_._..8''=" _.__
,_----_ X_Cr _-_
•O.._.- m*

7 10 13 16

Station

FIGURE HI. 17. COMPARISON OF BLADE SURFACE DATA FOR

INCOMPRESSIBLE FLOWS WITH AND WITHOUT LOSS FOR 6.2 °

INDUCER. Axial distributions of velocity and presure in mean

annulus.
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FIGURE III. 18. COMPARISON OF BLADE SURFACE DATA FOR

INCOMPRESSIBLE FLOWS WITH AND WITHOUT LOSS FOR 12 °

INDUCER. Distributions of velocity and pressure in mean annulus.
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12°Inducer: Two phaseruns A-16 and A-18 are compared with
incompressible run A-14 in figures III. 19, 20, 22, 24.

These six runs were all made at the same machineReynolds number, Rm = 2.5 x 107.
Single-phase liquid flow existed just upstream of the blading andthe inlet flow co-
efficients 01, f for the 6.2° and12° inducers were 0. 083 and 0. 1763respectively.

In order to understandthe two-phase phenomenaas shownin these results, we should
first review the performance parameters involved. For a given inducer, reference 8
showedthat our flow model analyzes the influence of four dimensionless parameters on
a fifth one. We express this as follows:

• = _(01,f, Rm, _sp, O ) (HI. 32)

where the following definitions apply:

Total head rise coefficient

T = goA_ (HI. 33)

Ut, 12

Inlet liquid flow coefficient

WT
01, f - (HI. 34)

of A 1 Ut ' 1

Machine Reynolds number

2
rt,1

R m -
V

Cavitation coefficient

(III.31)

_i - Psat
k_sp = (III 35)

P_[_ 12
go Ut'

Vaporization parameter

B 12 Of T*® - -- Ut, - Ut, 12 (III. 36)
go go
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where T* is defined in equation (I. 8). Table III. i lists these for each run. Because
of the many existing cavitation parameters, we have listed other useful forms in
table III. 1 besides 't'sp. These all express dimensionlessly the excess of inlet pressure
over vapor pressure."

Suction specific speed:

S -= (III. 37)

Cavitation number:

k _:

Pl - Psat

Pf Ut, 12

2go
(1 + _1, f2)

(m. 3s)

The effect of different combinations of inducer speeds and fluids at constant values

of these cavitation parameters is expressed by the vaporization parameter 0,

(equation III. 36). Accordingly, we made two-phase runs for various combinations of

•I,_ and @, holding Rm and 01, f constant. Figures III. 19 through III. 24 give data for

9 _ 10 and 1000. * Even though we used a lower 'I'sp for the 9 = 10 case, the volume
of vaporizing fluid, and its effect on performance was considerbly less than for the

9 = 1000 cases. Therefore, the incompressible case and the 9 = 1000 case for each

inducer are presented in figures III. 19 and III. 20. The exit radial distributions,

given in the first of these figures, show the effects of internal two-phase motion

primarily on the pressure. This is shown also in the overall performance data of

table III. 1. The loss coefficient data in figure III. 20 shows that most of the effects

are felt at the tip, as would be expected. The fact that we did not get more two-phase

performance deterioration (as compared to non-cavitating values) is probably due to

our omission of tip leakage vortex vaporization effects and our apparently low loss

factors, which apparently did not allow for the actual distribution of secondary flow

losses; (see foregoing discussion of incompressible flow with loss). Also, if we had

concentrated an additional annulus near the shroud, our results might have shown

more performance deterioration. The average relative velocity of this annulus would

be higher and would therefore lead to larger local pressure drops and the consequent

vapor formation. In early check-out work that we did on this method using a 2 x 16

field (one annulus only) we were able to obtain two-phase solutions at slightly lower

NPSH than was possible with the 4 x 16 field.

* For dimensional examples to which these solutions apply. See Table IV. 1.
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Run No. O Flow Inducer

A-5 6"20Incompressible

Two-PhaseA-9 1000 6.2 °

A- 14 Incompressible 12"

A-18 1000 Two-Phase 12 °
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FIGURE HI. 19. EFFECT OF TWO-PHASE FLOW WITHIN BLADES ON RADIAL

DISTRIBUTIONS OF" OUTLET VELOCITY AND PRESSURE FOR 6.2 AND 12 °

INDUCERS (R m = 2.5 x 107).
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Run

No. Description Inducer

A-5 Incompressible 6.2 °

A-9 Two Phase 6.2 °

A-14 Incompressible 12 ¢

A-18 Two Phase 12 °
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FIGURE III. 20. COMPARISON OF OUTLET PARAMETERS FOR TWO

PHASE AND INCOMPRESSIBLE FLOWS WITH LOSS IN 6.2 ° AND 12 °

INDUCERS. Reynolds number, R m = 2.5 x 107. Radial distributions

of outlet annulus efficiency and loss coefficient at blade trailing edge.
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FIGURE II1.21. EFFECT OF T_rO-PHASE FLOW ON AXIAL

DISTRIBUTIONS OF BLADE SURFACE PRESSURE, RELATIVE

VELOCITY, AND DENSITY IN MEAN ANNULUS OF 6.2 ° INDUCER.

NOTE: Answers are approximately the same as in Run No. A-5

unless otherwise shown.
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FIGURE III. 22. EFFECT OF TWO-PUASE FLOW ON AXIAL DISTRIBUTIONS

OF SURFACE PRESSURE, \:ELOCII'Y, AND DENSITY IN MEAN ANNULUS

OF 12" INDUCER. Note: Answers Aro Approximately Tile Same As Ial Run

No. A-14 Unless Otherwise Shown.
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FIGURE III. 23. DOMAINS OF TWO-PHASE & INCOMPRESSIBI,E FLOWS

FOR 6.2 _ INDUCER. Losses included: R m = 2.5 x 107 . Postions

of streamlines are approximately as shown for all 3-annulus runs

with this inducer, Note that extent of two-phase region increases

with severity of cavitation (part a), and that pressure buildup is

correspondingly delayed (part b).
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FIGURE III. 24. DOMAINS OF TWO-PtIASE & INCOMPRESSIBLE FLOWS FOIl

12 _ INDUCEFC Losses included: R m 2.5 x 107 . Positions of streamlines

are approximately as shown for all 3-annulus runs with this inducer. Note that

extent of hvo-phase region increases with severity of cavitation (part a) and

that pressure buildup is correspondingiy delayed (part b).
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The fact that the upstream regions within inducer blading unload at low @sp and high O

is shown in figures III. 21 and III. 22, where the distributions of blade surface density,

velocity and pressure in the mean annulus are given in three cases for each inducer.

First, the incompressible case gives the "front loading" characteristic of inducers.

Second, the O = 10 case produces some front unloading and a density reduction on the

suction side of the blade. Finally the O = 1000 case produces more unloading and a

greater suction side dens!ty reduction. Thus it appears that even though _I'sp = 0
in the cases of ® = 10, there was only mild _cavitation due to the low vapor volume.

O = 1000 at higher _sp was the more severe case as evidenced by the overall perfor-
mance deterioration that occurred, (see figures IV.4 and IV. 3) In all cases the

essentially unchanged outlet velocities require that the blades must carry the same

load. It merely shifts back farther into the inducer under cavitating conditions.

A more graphic illustration of these same two-phase effects appears in figures III. 23

and III. 24, where the portions of the machine occupied by two-phase fluid are shown

in part (a). Table III. 1 shows that we probably did not compute runs A-7 and A-9

for the 6.2 ° inducer with sufficient streamline balancing accuracy as compared with

run A-18 for the 12 ° inducer on this basis. This accounts for the lack of vapor in

at least the mean annulus between stations 2 and 3 (j' = 3) in figure III. 23. The

unloading phenomenon is illustrated in parts (b) of these figures in the effect that it

had on the distribution of average static pressure rise in each case.

C. CONCLUDING REMARKS ABOUT THE APPROXIMATE METHOD OF SOLUTION

The streamline balancing method of obtaining a rapid, approximate solution to single

and two-phase inducer flows gives accurate numerical results even when only three

annuli (four streamlines) are used for the calculations. It is a way of quickly judging

or grading an inducer to determine whether the more detailed and lengthy analysis by

the exact method is merited. (An exact description of the flow can be obtained only by

this latter method, and by using a sufficiently fine grid. )

In this approach we employed assumptions that appear to be justified for typical inducers,

but which may cause some inaccuracies. These are the omission of the meridional

streamline curvature and blade force effects and of the upstream and downstream flow

regions; the restriction of flow to concentric annuli; and the blade-to-blade analysis

assumptions (Section III. A. 4). Results for incompressible flow are in accordance with

known data where the same assumptions are used, (e. g., reference 6).

Results for two-phase flow are qualitatively correct; and they demonstrate the ability

of the method to describe the blade loading shifts that occur at low NPSH. The loss

factors appear to be weak, because these two-phase effects did not cause sufficient

pressure rise deterioration as compared to that of tests. For example, the comparison

of our 12 ° variable-lead inducer with the NASA 12 ° constant lead one in Figure III. 16

shows greater loss at the blade tips of the latter, which yielded lower efficiency than

we obtained on our somewhat similar configuration. However, empirical adjustment

of these factors could be used to offset any inadequacies, since the loss mechanisms
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appear to give qualitatively goodresults. (It might also be necessary to concentrate
one of the annuli near the shroud to produce two-phase performance deterioration. )
In the following section, we discuss this possibility of loss factor adjustment as we
use these results in the analysis of performance and design requirements.

The Fortran IV listings for this method currently include a blade coordinate subroutine
for radial-element, variable-lead blades. These listings together with other
computational details including running time estimates appear in Appendix D.
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SECTION IV

INFLUENCE OF FLUID PHENOMENA ON THE

PERFORMANCE AND DESIGN OF INDUCERS

In the foregoing sections we presented solutions of inducer flows using analytical

methods. These included a model for real fluid effects that can be changed in

accordance with experimental evidence without too much difficulty. In this section

we review the results of those and other solutions that include these effects to

determine the capabilities of our model for predicting performance and optimizing

designs. Since an inducer generally experiences some two-phase flow and losses,
we will first examine specific properties of our relations (I. 7) and (I. 13) for

describing these phenomena, (Section IV. A). Then in Section IV. B, we will

summarize our predictions of overall performance and their correlations with

recent theories for scale or fluid thermal effects. This is followed by resulting

observations about design optimization, (Section IV. C).

A. CHARACTERISTICS'OF EQUILIBi_I_ T_WO-PHASE FI_OW

AND LOSS MODE L _ ;

lo Two Phase Flow at Inducer Inlet

A homogeneOus two-phase or single-phas e flow in thermodynamic

equilibrium is implied by equations (I. 7)and (I. 13). Combined with

various forms of the momentum and continuity laws, these relations

enable us to analyze situations from three-dimensional inducer motion

to one-dimensional duct flow (reference 8, p. 4-54).

Of particular interest is the fluid state for vaporizing flow at the inducer
inlet. This information is required for the boundary conditions of the

analytical methods of solution, (Section II and III). Also, if such an

upstream two-phase condition does exist, we need this to determine

the proper design blade angles at inlet. In fact, Adams (reference 32)

uses equilibrium vaporization theory to explain his test results of

lifting boiling fluid in a pump inlet line.

Accordingly, equation (I. 7) and (I. ! 3) are used with continuity and the

streamline momentum equation for a one-dimensional analysis of the

upstream duet flow. The latter equation in the absolute frame'is

(cf. equation I. 12) "

go dp
- VdV + F

A special case is the essentially lossless acceleration that occurs in

a machine having a converging inlet duct. Here, the density is

(IV. 1)
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expressed in terms of the velocity as follows:

P= Pf_

1

B

_-o (V 2 - Vsat 2) + 1

(IV. 2)

or in terms of the corresponding dimensionless parameters for inducers,

Pf = = " A

0 (012 Vsat 2)+1

(IV. 3)

where Vsa t is the velocity at the saturated liquid condition. Note that Vsa t

is zero if the inducer is sucking boiling liquid from a tank. We used this

equation to calculate the two-phase inlet densities and pressure for our

zero-NPSH runs A-6 and A-15 (table III. 1).

Corresponding to(oP----_are the volume ratio of vapor-to-liquid for the

mixture (_y_V)and thel"ratio of the two-phase inlet flow coefficient to that

which wou_d exist for liquid at the same mass flow rate 01/(31, f,
(equation I. 7):

and

-1 = 2"* (Psat - P) (IV. 4)

V 1 0 1 1

V1, f 01,f ( P/Pf)I
(w. 5)

Aside from considerations of whether a given inducer can pump fluid with

a high inlet (V/L); we see from equation IV. 5 that when it pumps liquid at

inlet, i.e., (V/L)I -- 0, an excessive incidence angle between liquid and

blade would result with a machine designed to handle the same mass flow

rate at such high (V/L)I. To illustrate this fact, figure IV. 1 shows plots

of the preceding three equations for various values of the vaporization

parameter O defined by equation (IH. 36).

In all this work we must remember that the barotropic state relation (I. 7)

for two-phase motion is good only for low mixture quality x, where
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FIGURE IV. 1. HOMOGENEOUS, TWO-PHASE FLUID STATE AT INDUCER INLET.

Effect of the vaporization parameter O is shown for lossless acceleration from

boiling liquid (sat) condition.
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X _

T_ O .( dsf 1 -)(Psat- P) (Psat- P) - pf Pv

\-_p " Sfg \_g- ]sat (pg-1) satAA

6)

and the dimensionless suppression pressure is

A go
APv - _ (Psat-P)

Pf
(IV. 7)

We note further that the dimensionless form of the state equation (I. 7) is

A p 1

P-- _ ---- A
I+OAp v

(IV. 8)

For most cases involving this kind of flow, x is small for the minimum values
of 9 encountered, and this relation is an adequate representation of the

equilibrium model. For example, in liquid hydrogen at 36°F, (reference 19)

B _ (pf T*._ = sec 2
go \----_] .0002 ft 2

Pf/Pg = 52.8

A

By selecting the values in equation IV. 8 that give minimum p, (and therefore

maximum x), we have

O (= B 12-- Ut, )=40
go

A

APv =.1

We obtain from equations (IV. 4,6, 8), using Pf / Pg from reference 19

x = . 077

P/P f = .2

V/L (= O A_v) = 4

For most fluids, T* is roughly proportional to Pf/Pg; so, we conclude from

equation IV. 6 that this value of x is typical of that obtained for the largest
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concentrations of vapor in inducers. Since A Pv is quite large, (compared
with the inducer head-rise coefficient @ -- similarly defined in equation

III. 33), and since this example is for a high inducer inlet tip speed, viz.,

Ut, 1 = 447 ft/sec., our barotropic relation (I. 7) or (IV. 8) should be
applicable in most cases. (Refer to the barotropicity dicussion in

Section I. A. 1).

2. Discussion of Losses

A good prediction of equilibrium two-phase and liquid flow within an

inducer depends on the accuracy of the factors and methods for evalu-

ating losses, as well as the equation of state. Besides blade tip leakage,

two types of loss can be distinguished, (equation I. 13); viz., skin friction

or Reynolds-number-dependent losses, and diffusion or inertial losses.

For friction losses we are using an empirical relation (equation I. 14)

for smooth pipes to express the friction factor f. This loss also depends

on the local hydraulic diameter of the channel which is assumed constant

for all annuli at a given station. A correction to this is probably necessary

to account for the additional skin friction arising from the secondary flow

caused by blade-to-blade pressure differences. But secondary flow losses

might be conveniently described by an appropriate adjustment of the
diffusion loss factor.

A good diffusion description is especially important for inducers with two-

phase flow, since the sudden disappearance of vapor that can occur

probably results in a dumping of at least part of the accompanying change

in relative velocity head (references 32 and 33). This sudden diffusion

head loss, (see equation I. 13), from station j to j + 1 in the inducer may

be given by

HL, d _.tWj2 - Wj + 12 /= - -- (IV-9)
2go

where Wj+I<W j. In our model we expressed _"as a function of the ratio

Wj+I/Wj (equation I. 15), making it possible for us to describe only a
discontinuous change of W. If the factor _'is to include separation losses

that occur over some finite distance, we would need to modify this

function (equation I. 15) in one or more of the following ways: (a) limit the

number stations j; (b) increase the strength of _; (c) make _ a constant that

is independent of W; or (d) make _*dependent on the diffusion factor D. A

measure of the overall blade loading, (see definition on page 153 of

reference 33), the distribution of D would first need to be estimated from

a preliminary solution or one-dimensional analysis of the machine.

As a result of our inducer solutions with loss, it appears that some combi-

nation of (a), (b) and (c) would give better answers and could be easily
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included in the analysis.
losses that canoccur andthe attendant values of _'.
more general expression of equation (I. 15)would be

Wj+I
1

_= _c +
1-/" wj+I

wj

It is interesting to note the types of these inertial
For this purpose, a

(IV. I0)

where in our analysis we chose _'c = 0 and _" = -1, (see equation I. 15),

and where

=(incompres sibly)

(Wj 2 -Wj+l)/(2go) (Wj2 - Wj+12 )/ (2go)

Now, applying the momentum equation incompressibly and one-dimension-

ally with _'c = 0, one obtains _" = -1 for symmetrical sudden diffusion

(no turning) - the Borda-Carnot loss, which would appear to be a minimum

sudden diffusion loss. On the other hand the largest loss would be for

_' = _= 1, which probably occurs for a flow that suddenly diffuses while

making a sharp 90 ° turn. (Such a turn usually causes an additional head

loss of some fraction of Wj2/2g o due to separation and secondary flow. )
Figure IV. 2 shows the results for a variation of _" between these extremes.

Using e. g., _" -- 1/2 (instead of the weaker _' = -1 that we used in our

analysis) might suffice for any discontinuous velocity change such as that

due to inlet incidence or to bubble collapse, (reference 34 and 35). _c

could be made to depend on the rate of velocity decrease with distance.

This would account for diffusion in a continuous velocity field and could

eliminate the need for the other term in equation (IV. 10).

To account for tip leakage loss the complete loss equation (I. 13) might

need an additive term t 1 W2/2, where t 1 would be a function of clearance,

of blade-to-blade pressure difference and of position (as with Dh) such

that this loss is greatest in the tip region or any other region as required.

This could also account for secondary flow losses that would not be covered

by equation (IV. 10) as just discussed.

These and other modifications to the portions of the analytical programs

where losses are calculated are needed, particularly to improve our

description of the cavitation head breakdown process.

Several investigators have done work that gives insight into this head

breakdown problem. The concept of a cavity on part of the suction side
of the blade that causes a sudden diffusion loss downstream was introduced

by Stripling and Acosta (reference 34 and 35). Our model suggests the
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Configuration (a)

Diffusion in Sharp. 90 ° Turn
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IBorda-Carnot Loss)

FIGURE IV. 2. SUDDEN DIFFUSION LOSS FACTOR, _'. For discontinuous relative

velocity changes. Also applicable to continuous changes where appropriate spacing

of stations j in a finite difference calculation scheme is employed.

(See Equations IV. 9 and IV. 10).

131



presence of sucha cavity by yielding a low density in that region (see
figures Ill. 21 and 22). The shock theory of Jakobsen (reference 36)
combined the cavity analysis with thermal concepts and could be used to
advantagein improving the loss descriptions in our three-dimensional
programs. Two-phase sonic velocities (reference 37) can be very low,
and the attendant mass-flow limiting process shouldoccur, (reference 38
and reference 8, p. 4-55). Our model does produce choking if a solution
at too low a NPSHis attempted, and this is discussed in the following
section.

B. PERFORMANCE AND SCALE EFFECTS WITH TWO-PHASE FLOW

1. Low-NPSH Tests of Inducers by the Analytical Program

We made a series of solutions with the approximate analysis program,

which includes unmodified loss relations (equations I. 13, 14, 15) to

determine the net positive suction head requirements of the two sample

inducers, (figures II. 12 and II. 18). All these analytical runs were made

at the same values of flow coefficient 01, stated in table IH. 1 for the

respective inducers. However two runs, A-6 and A-15, had negative

values of cavitation number k at inlet and therefore had two-phase flow

upstream of the blading. The liquid flow coefficient 01, f was therefore

lower than 01 for these two cases only (see footnotes to table III. 1),

both of which used O = 10. For the other data, we conducted three series

of runs at ® = 10, 40, and 1000 respectively on each inducer. In each

series we started at high NPSH, where the dimensionless form ,I_s is

given by

q., go (NPSH) 012

s - Ut, 12 ( _I'sp > 0)
- _I,sp +

2 '
(IV. 11)

and we lowered _sp until no solution could be obtained (choked flow), or

until q'sp = 0, (table Ill. 1). Table III. 1 lists only those two-phase

solutions that were obtained for the lowest possible _sp.

Figures IV. 3 and IV. 4 show the kind of pressure-rise-deterioration curves

that we obtained, starting with the value of _sp required to prevent
cavitation entirely and ending with the value for which no solution was

obtainable w except in the case of ® = 10, where solutions for q'sp = 0

did exist. For comparison, actual cold water (® _ 1,000,000) test

results of a NASA 12 ° constant-lead inducer are also shown in figure IV. 4,

(reference 31, p.47). Even though this reference inducer is somewhat

different from our 12 ° machine, the results indicate that our analytical

model reasonably predicts the choked-flow or zero-performance condition.

However, our curves have sharp breaks and therefore do not yield the
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FIGURE IV. 3. EFFECTS OF CAVITATION AND VAPORIZATION PARAMETERS

ON COMPUTED MASS-AVERAGED PRESSURE RISE OF 6.2 ° INDUCER.

Minimum possible values of cavitation coefficient for incompressible operation

are shown for A_/A_N C : 1.
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Minimum possible values of cavitation coefficient for incompressible

operation are shown for Ap/APNc - 1
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the gradual decay of pressure rise with decreasing @sp evidenced by
actual tests. This means that modifications to the loss factors and the

annulus positioning as inlet, as discussed in the foregoing section, are

probably necessary to extend the two-phase regions farther into the

inducers and to describe more accurately the losses due to bubble collapse,

i.e. the sudden disappearance of these regions, as illustrated in figures

IN. 23 and III. 24.

Such adjustments could also serve as a substitute for any lack of baro-

tropicity. Specifically, in the discussion of Section I. A. 1 we spoke of

the rise of vapor pressure of the liquid due to losses. If such a rise

occurs before all vapor is condensed by the rising inducer pressure, the

domain and effects of the remaining vapor could be significantly increased.

A stronger friction loss factor than that of equation (I. 14) might artificially

reproduce this by retarding the rise of inducer pressure by the slight

amount of the simulated vapor pressure change.

Table IV. 1 shows dimensional examples to which these analytical per-

formance results apply. According to our equilibrium theory, then,

liquid hydrogen can be pumped at 224 ft. per sec. inlet blade tip speed

in typical inducers at zero cavitation number. Doubling the tip speed

makes ® -- 40; and, as equation (IV. 8) shows, this causes more vapor at

a given pressure drop coefficient in the blading, preventing a solution at
k=0.

2. Theory of Fluid and Scale Effects

The complete inducer analysis that we employ to find the NPSH limits

actually contains the explicit relationship, however complicated, between

the independent dimensionless parameters, Rm, 'IJsp and ® that determine

the performance 4, (expressed by the functional equation III. 32). How-

ever, we should try to discern in these and other results a simpler, under-

lying theory for these fluid and scale effects; especially the influence of

•I_sp and ®. We might then be able to determine the important inducer

design factors.

Specifically we are interested in how to predict the NPSH requirements

for various fluids and sizes of a given geometry for a fixed flow coefficient

_1, f. Therefore, we require the minimum value of the NPSH parameter _s
for which stable inducer performance is possible or for which the head

coefficient ,I, is some reasonably high percentage of the noncavitating value

_NC, (i. e. the value of no _s and ® influence), If Reynolds number effects

are small compared to those of fluid vaporization, the functional equation

(IH. 32) reduces for these purposes to

(TNC) =C°nstant= ( @-_NC) REQ'D (_s, min, ®) (IV. 12)REQ'D
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TABLE IV.I

DIMENSIONALEXAMPLES OF SAMPLE INDUCERS

For inducers having same geometry as in Figure If. 12 of II. 18

Dimensionles s

Parameters of

Solution

Vaporization
Parameter

O

Consistent Set of Dimensional Conditions

to Which Solution Applies

Machine Liquid

Reynolds and

Number Temp,

R
m

Inlet

Tip Rotative Blade Tip Speed

Dia. * S__Speed* at Inlet

Dr, 1 N Ut, 1
(Inches) (rpm) (ft/sec, )

10

4O

1000

2.5 x 107 Hydrogen 5.37 9,550 224

@ 36°R

5.0 x 107 Hydrogen 5.37 19,100 447

@ 36°R

2.5 x 107 Water 6.00 9,550 250

@ 267°F

*NOTE: The only parameter that is directly connected with the inlet diameter

D, t or the speed N is the machine Reynolds number. For the usual

rS_ge of sizes, R m appears to have a small effect; so, the important

limitation for equilibrium two-phase flow is not Dt, 1 or N, but their
product, the tip speed

= rt, 1 Dt, 1Ut, 1 _2 = _ N

which is connected with the cavitation and vaporization parameters;

(see Table III. 1).
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|

or

_l' S, min = _lJs, rain (E))
(iv. 13)

Because 01, f is fixed in this problem, we could substitute either kmi n

or Smax for @ s, rain, where dimensionless relations between them (see
equations III. 34, 35, 37, 38 and IV. 11} are

2 XI,sp
k =

i + 01,f 2

and

_0 A1
N Q_ 1,f _ rt,1 2

S=- =

(goNPSH)3/4 2_-- (q's) 3/4

2
When applied to axial inducer inlets where A 1 = 7rrt, 1
general form for the suction specific speed becomes

(I- }12), this

(IV. 14)

(IV. 15)

s= j01,f (i- }12)

2 _ ( T s)3/4 (IV.16)

Thus we are looking for the following function, (equivalent to equation

IV. 13):

Smax = Smax (®)01,f

or, dimensionally:

(IV. 17)

NPSHmi n = NPSHmi n (B)Qf (IV. 18)

Investigators have found empirical correlations that tend to support the

validity of the equilibrium equation (IV. 18). Stahl and Stepanoff (reference

13 and 14) first proposed a remarkably simple theory for that relationship,

also presenting their results. The basis of this theory is that the breakdown

of head rise under cavitating conditions is caused by a performance average

vapor-to-liquid volume ratio (V/L)p. Salemann's observations (reference 17)
lend more support to this idea; and so does the work of Spraker, who also

defines the thermodynamic constant (B = Pf T*) so that the relative vapori-

zation characteristics of various fluids can be easily identified. For
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example, figure IV. 5 shows the variation with temperature of the
Pf T*equilibrium thermodynamic vaporization constant B =__ for water.

Values for some other liquids are shown, go go

indicating the temperatures at which water has similar vaporization

properties. The parameter (V/L)p, which connects B and NPSHmin

varies with geometry and flow coefficient. Our model uses T* in the

detailed flow calculations, but (V/L)p is an average that must be found

empirically. We can attempt this with the performance results of our

analytical solutions as with test data.

Figure IV. 6 illustrates the usual empirical method of finding the

constant (V/L)p, which is assumed to exist when sufficient choking
occurs to cause the inducer pressure-rise A_ to deteriorate appreciably

from its corresponding non-cavitating value A_N C. We make the evalu-
ation when _p =_ _ reaches the minimum critical value that still
insures reliable, AP-NC stable operation of the machine. This need not

A

be interpreted as requiring uniform @ p in all cases -- even with the

same geometry and flow coefficient; although equation (IV. 12) and

figure IV. 6 conveniently show it that way. TSH is the difference between

the values of NPSHmin for fluids having respectively infinite and finite
values of B.

The physical significance of B can be seen from its effect on V/L

through equations I. 7, 8 and IV. 4. Infinite B leads to infinite vapor

volume (for any depression of static pressure below vapor pressure)

and the essentially direct effect that V/L has on head breakdown.

Accordingly, zero B means that vaporization produces no effect on

performance.

The theory that connects NPSHmin and B can now be stated emplicitly

by referring to equation (IV. 4) which defines V/L:

(NPSHmin, B --_= - NPSHmin, B ) - B
(IV. 19)

where B-_¢_ is approximated, e.g., by cold water, (figure IV. 5). This

is the explicit relation suggested by equation (IV. 18), and it can be

similarly written as

(-_)p
TSH -

B
(IV. 20)
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f

or dimensionlessly as

(_I's,min ' ®-_- @

(_-)p

s,min, O)= O
(IV.21)

In terms of S this becomes, (noting equation IV. 17, and using equation

IV. 16).

.

Smax, O = ll -

l

Analysis of Results

Smax, 0 ""_ _

.(-})p/ 3/4

Our analyticaltests of two inducers for NPSHmi n can be empirically

examined using of these equivalent relations,say equation (IV.22). We

have three data points at constant 01, f (tableIII.I) for each inducer, viz.

runs A-7, 8, 9 and A-16, 17, 18 respectively; but only the lattertwo

points of each set yielded flows sufficientlyclose to choking for us to be

able to say that Smax existed, (see figures IV. 3 and IV.4). Taking the

corresponding values of Smax and @ of these two points, we solved the

two resulting equations (IV.22) for (L-_--)p and Smax, ®.,.¢_for each

geometry. Furthermore, the type of fluidthatyields infinitesuction

specific speed is now related to the latter (coldwater) Smax:

2 Smax, 0..._ _,) 4/3

,,

(IV. 22)

(IV. 23)

of (V_ does produce similar head-rise performance forIf this value
\L! P

all @, we may plot Smax versus @ using equation (IV. 22). Figure IV. 7
shows the results.

Whether similar analytical, critical performance points for other values

of O would lie on the appropriate curves of figure IV. 7 remains to be

proven. Even though runs A-7 and A-16 had less-than-critical cavitating

head-rise deterioration, (see figures IH. 21 to 24 and IV. 3, 4), they are

shown there for reference only. Observe that Smax ' @._ = (cold water

Smax) is considerably greater than that for which two-phase activity

begins (as shown in figures IV. 3, 4), since inducers and pumps are always

cavitating when performing at Smax conditions. Also ® = 1000 gives nearly
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L

the same Sma x as at O -*-_. Finally, the 12 ° inducer has the greater

(V/L)p capability, which could be attributed to the larger amount of the
inlet fluid relative incidence i not compensated by blade thickness. Note

that computations were made for faired blades, (figures II. 12, 18), which
in both inducers would have taken 0.64 ° of the incidence had full thickness

existed at inlet; i. e., all incidence in excess of this blockage amount then

causes leading edge blade loading and the attendant flow adjustments to the

internal two-phase activity.

A well-known experimental fact, the evident (V/L)p capability of this blade

fairing is illustrated by the two-phase no-loss run E-9 of the exact

analysis method (table II. 1). Here, the presently unadjusted upstream

stagnation stream surfaces are set at the relative flow angle (i = 0), and

the light load taken by them -- as they now act like faired blades -- nearly

eliminates two-phase activity within the blading itself, (figures H. 28 and

29). This "additional blading" enabled us to obtain that solution with a

lower NPSH (@ sp = 0 at O = 40)than was possible by the approximate
method, which produced loading only on the actual blading.

To the extent that the preceding correlations and the experimental data

of references 13, 14, 17, 18 support the (V/L)p theory, as the connection

between S and O, we can propose a concluding theory about two-phase

activity within inducers. The observation that two-phase flow exists

at a much higher value of NPSH than the critical one suggests that two

fairly distinct flow regimes exist over the NPSH range:

a) For the range

NPSH incompressible > NPSH __ NPSHmin, ® --_
flow

enough vapor forms to unload the inducer blades at inlet by an amount

compatible with the NPSH. This prevents the far greater volume of

vapor that would have choked the passage had the blade suction-side

pressure-drop not been reduced by the unloading (see figures III. 21 and

22). The extent of and density distribution of the vaporous region vary

with NPSH; but performance is affected only slightly, because the losses

associated with these redistributions of load near the leading edge are

small. Thus there are no O effects over this NPSH range, (figure IV. 7).

b) In the range

NPSHmin, O. _ 0o _ NPSH __> NPSHmin, 0

the passage is in the process of choking due to the formation of vapor

which is in excess of that required to satisfactorily unload the blades.

In contrast with regime (a), the flow in the leading portion of the inducer
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is essentially one-dimensional. The additional V/L formation with
diminishing NPSH is more nearly uniform across the passageand
is the only V/L Contribt_tingto (V/L)p. Thus the extent of this NPSH
range dependson ® (equationIV. 21); andWhen(V/L)u is reached, the
passageis sufficiently chokedto produce the critical'performance at
NPSHmin. _ ._ -

Every geometry andflow-coefficient combination has the capability of
handling a specific amount of this excess vapor (V/L). The results in
figure IV. 7 suggestthat (V/L)p may be more or less directly dependent
on the amount of available incidence in excess of that required for
blade blockage. Thus if i = 3° or 4 ° total, a typical inducer might be

capable of (V/L)p = 0.5. The resulting plot of equation (IV. 22) using

Smax, ®._ _ = 2, (= 2 x_17,180 = 34,360 in "rpm-gpm-ft" units),
is shown in figure IV. 7. A similar curve for typical centrifugal pumps

is also shown using Smax, ®._ = 1/2 (or 8,590). Higher incidence
probably leads to more vapor due to excessive loading; therefore, no

further gain of (V/L)p results. Observe that if @ is large, the magni _

tude of (V/L)p is of no consequence, since negligible NPSH reduction •
is possible in the regime (b), (equation IV. 21). In this case (typical

for cold water) regime (a) exists over the entire NPSH range, and

regime (b) exists virtually at the point NPSHmi n only.

This theory may work empirically in the thermodynamic non-equilibrium

case, provided the resulting time delay or other effects are uniform.

There is no assurance that even this is true in all cases. For example,

the work by Sandercock et al (reference 39) shows some improvement in

performance with a @ increase. However ® was very high (cold water),

so that in view of the foregoing discussion it should have no influence.

Also, their results could be partly a Reynolds number effect. Ruggeri
and Gelder have shown that considerable local departures from equilibrium

are possible, (reference s 16, 40, 41); and HolI and Treaster have reported

work in this area, (reference 42). The sudden diffusion due to incidence,

other turbulent conditions, and a fairly one-dimensional two-phase motion

might reduce these departures to some uniformly minimum value for in-

ducers. If a correlation with the constant (V/L)p theory is then still

possible, corresponding empirical corrections to the analytical flow model

might also be possible, (section IV. A: 2).

C. OPTIMIZATION OF GEOMETRY

The foregoing analysis of performance results indicates that certain important features

of inducer design should be optimized with the help of the analytical programs that

are available (Appendixes C and D). As observed from the data accumulated in this

work, we now discuss these design features:

143



O(3

I I

• I r-_

•r-4 °,-_

.r-_ .F-4 I

0

>1_

d

ff--

b_

0 0

0 •

M M

L_ _ 0

0

L) •

_z_
0

oN e.

M M'_

• _ "

•_, <o_

0

0
0

0
0

. "1,.T.

ttl ch_

tud._

0
0
0

:HgdN } o
:N JbAN

'poad S a[jraad S uo.Bon 8

144

- S

0

0
0



a) Head coefficient

b)

c)

d)

If the loading is maintained light (equation IV. 24) the head coefficient in

a reasonable length will not be great. However, attention to maximum

possible deceleration criteria and diffusion factors are necessary to

prevent loss of control of the flow, (reference 33). In the interest of

restricting vapor Cavities to narrow regions, relative velocity diffusion

should probably be minimized while keeping losses to a minimum.

Inlet tip blade angle, Bb, t, 1

Feature (c) should lead to low blade angles throughout the inducer which

are shown to be necessary in other optimizations (references 7, 34 and 35).

Even with light loads, low B's are necessary. This is probably because

the incidence at high blade angles for reasonable leading edge loadings is

not sufficient to avoid the choking problem; i.e., i//_flow is probably

closely related (V/L)p for low angles. However, two problems arise if
is too low; viz., higher losses due to the low hydraulic diameter of

the resulting passage cross section, and a higher O with the consequent
NPSH difficulties. This latter problem arises for a given fluid, mass

flow rate and rotative speed, because a lower blade angle requires a

higher inlet diameter and tip speed.

Incidence i

This difference between the blade and relative flow angle should be greater

than that required to compensate for blade blockage. The amount of incidence

should be sufficient to avoid choking the passage by vapor formation at too

high a value of NPSH. Too high an incidence is undesirable because of the

back flow and instability that develops especially at high NPSH, and because

of vapor formation arising from the attendant loading.

Solidity a, or length m.

A large solidity or inducer length is necessary to contain the two-phase

fluid in the front or leading portion of the machine• Liquid is required

at exit in order to obtain the pressure rise. Also, the blade loading

must be very light to prevent excessive vapor generation by reduced

pressure on the suction sides of the blades. The moment of momentum

relation shows both these points when expressed in the following form:

w d Hi
Pp- Ps =

n b r 12b dm

where the ideal head H i = UV0/go
in which mass flow rate w exists.

(IV. 24)

and b is the blade height of the passage
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The computer programs for analyzing the three-dimensional flow field are probably
necessary to optimize these features successfully where two-phase flow with losses
is involved. The primary object of a design so evaluated is to avoid the choking
phenomenonas uniformly as possible in all sections of the inducer. The exact three-
dimensional method has the capability of analyzing thermodynamic non-equilibrium
caseswith the appropriate changesin the loss and density expressions. If acceptable,
the approximate methodwould be more easily adaptedto this problem simply by
empirical corrections to the equilibrium loss factors.
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CONCLUSIONS

We have obtained solutions to the set of simultaneous differential equations and
boundary conditions required for a general continuumdescription of single and two-
phasethree-dimensional flow with losses in turbo-pump inducers. Becauseof this
generality, both the exact and approximate methodsof solution that we developedare
also applicable to other turbomachines. Althoughwe used a thermodynamic equilibrium
model with empirical loss factors to accountfor the two-phase and loss effects, this
feature of the analysis is purposely subject to changewithout destroying the basic system
of equationsor mathematical iterations.

The exact three-dimensional methodof solution successfully employed the total residual
relaxation conceptfor the simultaneous finite difference solution of four non-linear
differential equations and the attendantboundary conditions and additional fluid equations.
We obtained results for nine runs without losses, andthe concluding remarks at the end
of Section II contain observations of the numerical and fluid dynamic phenomenain each
run. Together, these empirically demonstrate the validity of the method. The first five
runs were special cases for which knownanswers were available. These runs, which
described both liquid and two-phaseaxial flow through paddle-wheel channels demonstrate
that the relaxation procedure converges with goodresults. They also show that a large
number of finite difference field points gives more accurate answers.

Of the four runs on the sample 6.2° and 12° variable-lead inducers, all were for in-
compressible flow exceptone on the 12° machine. This one revealed that the inclusion
of these two-phase effects required a negligible increase in computing time. One
incompressible run on eachinducer gave reasonableoverall performance results even
with the coarse, highly non-orthogonal grid that we used for these low-angle channels.
The more detailed internal distributions differed from those obtained by simple radial
equilibrium techniques, but were qualitatively reasonable. The distributions resulting
for the one special run with pressures forced to satisfy the streamline momentum equation
for no loss were more familiar. This showedthat reasonably accurate results are
possible with a grid that is too coarse for the relaxation procedure to produce low enough
residuals to guaranteethem. The initial positions of the upstream and downstream
stagnation stream surfaces were not changedas the progress of the solutions indicated
that some load existed on these extensionsof the blades. However, as one compares
the differences in these runs, the inaccuracies of the coarse grid (e.g. 5 x 5 x 22) that
we used (for reasonable computer running time) appear to have had more effect on the
answers. We have presented detailed recommendations at the end of Section H that
contemplate satisfactorily accurate three-dimensional answers for lossless flow in
typical inducers with a 10x 10x 50 grid, about twelve hours on goodcomputing equip-
ment, and appropriate handadjustment of the blade extensions. Losses are easily
included and may require a finer grid and more time.

The approximate methodof solution was more rapid, but it employed assumptions that
amount to combining two quasi-two-dimensional solutions to get answers in three
dimensions. However, it is a step forward because it does combine these solutions
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with two-phase flow andloss effects. The method of solution by balancing initially-
assumed streamline positions makes it possible to get satisfactory answers for a
very small number of these streamlines. Results of over eighteen runs demonstrate
the capability of this method as a rapid way of judging or grading an inducer; e. g.,
by the results of several runs at various inlet conditions. This would determine if
andat what condition a particular inducer shouldbe analyzedfurther by the more
detailed andlengthy exact method. Abouthalf of these approximate runs contained
two-phase flow with losses. The others were incompressible runs with and without
losses. This data clearly describes blade leading edgeunloading that occurs for
cavitating conditions (low NPSH). In fact, several resulting inducer pressure-rise-
versus-NPSH curves at different values of vaporization parameter showthat our model
for these real fluid effects qualitatively produces the familiar headbreakdown curve.
Stronger loss factors appear to be necessary to reproduce the shapeof this curve
more exactly; although"choked" or minimum NPSHconditions for complete head
breakdown correlate reasonably with test results. The basic restrictions of our
approximate method may be partly responsible for this lack of complete correlation.

These results include the fluid and scale effects of the cavitation and thermodynamic
vaporization parameters that are part of the analysis model. However, further study
showsthat this data has some correlation with the well-known, simplified, vapor-to-
liquid volume ratio theory for minimum allowable inducer NPSH. The fact that two-
phasemotion exists with negligible inducer performance effects over a wide range of
higher values of NPSHindicates that two cavitating regimes exist over the NPSH
range, viz., "unloading" and "choking". The simplified theory probably predicts these
fluid and scale effects as well as it doesby being of importance in only the choking
regime, which causes complete headbreakdownregardless of non-cavitating pressure
rise.

This theory and data indicate that inducer designoptimization with these analysis
methods can be doneby examining different designs for the effects of (a) headcoefficient,
(b) inlet blade angle, (c) inlet incidence angle, and (d)blade solidity. Empirical modi-
fications to the programs appear to be necessary to improve the existing thermodynamic
equilibrium model for two-phase flow andloss effects. This may be sufficient to
describe the non-equilibrium phenomenaif they are not separately distinguishable in
the experimental test results that would be used for the purpose. Fortran IV listings
of both the exact and approximate analysesare included in this report, andthe programs
are ready for further use.
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APPENDIX A

TRANSFORMATIONFROM CYLINDRICAL
TO GENERAL, OBLIQUE COORDINATES

The desirability of a natural coordinate system for which the boundaries of the flow
channel becomecoordinate surfaces was mentionedin Sections II. A. 1 and II. B. 3.
Sucha transformation is described in this appendixand the wall boundary condition
(equation I. 16)) is stated in terms of these natural coordinates. We start by designating
the hub and shroud as surfaces of constant a , the blade surfaces as surfaces of
constant fl, and the inlet and exit throughflow surfaces of the channel as surfaces of

constant'r (see figure A. 1). Knowing the cylindrical-coordinate description of the

physical boundaries of the flow channel, a transformation is induced between the

cylindrical coordinates (r, 0, z) and the family of "r-surfaces (hub to shroud),

fl-surfaces (blade-to-blade) and "r-surfaces (inlet-to-outlet) as follows

r =r (a,8,7)

0 -- 0 (a, fi,v)
(A. 1)

This transformation has a Jacobian matrix denoted by

- Or O0 Oz7
Oa Oa 3a

Or Ot_ O z

Or 08 az
07 07 03'

(A. 2)

We now apply the "chain rule" (reference 43) and rewrite all the partial derivatives

which appear in equations (II. 1) through (II. 4) in terms of the natural coordinates so
that

O _ Oa a + _ O + 07 O
Or Or Oa Or OB Or O_

O aa a aB 8 a'r a
-- + +

O0 O0 aa 80 aB Oo a'r (A. 3)

0 _ Oa 0 + 0____ 0__0_+ O'r 0
8_ O z Oa 8 _ OB O_ 07
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FIGURE A. 1. NATURAL COORDINATE SURFACES FOR GENERAL

CHANNEL GEOMETRY.
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Using the notation of equation (A. 2), we see that the nine coefficients in equations

(A. 3) are the elements of the Jacobian matrix

-0_ o_d_ 03"
Or Or Or

o_ o_£ 0___L_
O0 O0 ao

o_ o_g_ o__Z
_ Oz O_ 0 _-

r,O,

r, 0,_
which is the matrix inverse of J (a,T,_) (reference 44).

needed for the evaluation of O-%r' 0-_ and are calculable from

Oa _ ( O0 Os O0 0_ ) l-Or O(J 03" 03" O-b--fl- "-D

o____= (oo a_ 00 0_) 1Or _ _'--Td--'_- --ff

03"_ (00 o_ oo o_ ) xOr a_ a# oB Oa "_

Oa _ [ Oz
ao \ of�

o_K= ( o_O0 03"

03' _ [" Oz
aO _, Oa

Oa _ { Or
O_ \ a f�

o__£ __( orO _ a7

03' _ (_OrOz Oa

]03" 03" O#

Or as Or \
Oa 03" ]
Or

1

-6
1

aa --ff

O_ Or _ 1
-_ } --ff

1
--6

1

--ff
1

-6

j{ r,O,_ /

a] _5] is given by

a# a#
O0 Or dO
03" 03" 0t/ ]
O0 Or O0
aa aa -a_ )
O0 Or O0 "_

of� of/ aa ]

where the determinant of

( ) Or O00z O0 0_)
Or O0 O_ O0 O_ Or (00 as oo o_ +

D = _ --_ 07 03" Of/) + "_ k_O-_ Oa OY _(-_ O# Off 0-_

(A. 4)

Therefore, the nine coefficients

(A. 5)

(A. 6)

The main analysis program, described in Appendix C, uses formulae (A. 3) for calcu-

lating all the partial derivatives of the variables appearing in the residuals as given by

equations (II. 5) through (II. 8). The necessary transformation coefficients are calculated

by a subroutine from the (r, 0, z)-coordinates of the grid points using formulae (A. 5)

and (A. 6).

For a typical inducer channel the degree of obliqueness of the (a, B, _,)-system is

largely due to the blade angle. For example, at the blade leading edge of the 6.2 °
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inducer channel, with which run E-6 was made, a typical "star" of grid points is
highly oblique becauseof the shallow blade angle. Figure A. 2 shows such a star near
the blade leading edgeat the root-mean-square radius of r -- 0. 7454where the blade
angle is 8.4° (see equation (II. 40)). In the interior of the channel, where A_ is 0. 23524

instead of 0. 10857, the distance A_ is even greater relative to the distances Aa = Ar

andAB -- rA0.

This situation may be alleviated by taking the "r-surfaces to be quasi-orthogonal to the

blade surfaces rather than perpendicular to the z-axis. One drawback this has is that

many more _' -stations are required. Also, if the grid points do not lie on planes of

constant _, the determination of blade loadings and of throughflow boundary conditions

is rather difficult. A simpler remedy is to form a denser grid of points although this

increases computer time per relaxation cycle. We again point to the quality of our

results in Section II. B and recommend that for any particular channel geometry a

reasonable grid be selected based on qualitative diagrams similar to figure A. 2.

The treatment of the wall boundary condition

w. _ =o (i. 16)

is as follows:

At a point on a blade we can let the normal vector, "if, be VB because the blades are

surfaces of constant B • Thus

W. n = W • VB=0

or

u_-7+ +w =0r O0 Oz (A. 7)

Similarly, since the hub and shroud are surfaces of constant a, a normal vector at

such a point is V a and we have

U m
Oa + v Oa + w O---g-a=0
Or r O0 O_

Since the hub and shroud are surfaces of revolution, i.e.

point the condition is

on a hub or shroud

u 0__ga + w 3--_a =0 (A. 8)
Or Oz

At an "edge" point, i.e. where a blade meets the hub or shroud, equations (A. 7) and

(A. 8) must be satisfied simultaneously.
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In the computer program in its present form (see

(A. 8) are respectively solved for w and u, i.e.

Appendix C) equations (A. 7) and

OB + v OB_/O__ (A. 9)
w=- (u 0--'-'r r 00

0o/U = -W'-_
(A. 10)

Thus, on a blade surface w is explicitly dependent on u and v. On the hub or shroud u

is directly determined by w. This is because, for the blade angles we have been

considering, the dominant coefficients are 0B/ 0s and Oa/ Or. In fact, equations

(A. 9) and (A. 10) may be used successfully for blade angles and hub and shroud slopes

of up to 60 ° to 70 °. This method is used merely for convenience of programming --

every grid point has four residuals associated with it. To make the program completely

general with respect to channel geometry, equations (A. 7) and (A. 8) can be treated

as "boundary condition residuals", in which case there would be five residuals at

boundary points instead of the usual four (see Section II. C. 2).

Finally, the ( a, B , _" ) -surfaces need not be uniformly spaced as concerns the validity

of the transformation formulae. Thus, with a proper choice of these surfaces the grid

can be made denser in the boundary regions relative to the interior of the flow channel,

thereby achieving greater accuracy close to the boundaries where the discretization

discrepancy is the greatest (see Section II. A. 5).
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APPENDIX B

COMPLEMENTARY STREAM FUNCTIONS

In this appendix are discussed the development and applications of a pair of comple-

mentary stream functions to the solution of the three-dimensional fluid flow problem,

as outlined in Section I. The advantages and disadvantages are weighed against each

other and it is concluded that, although the approach is aesthetically appealing, much

more development is required before it can be applied as a practical solution method.

Observe that a vector can always be represented as lying along the intersection of two

nonparallel planes (which are not necessarily orthogonal to each other). Specifically,

we can represent the relative velocity vector, W, at a point as lying along the inter-

section of two planes, each of which is tangent to one of a pair of surfaces at that

point. Designating two such families of intersecting surfaces as

# (r, 0, _) = constant 1

!a (r, 0, _)= constant

(B. 1)

yields (see figure B. 1)

W=A V#xVa (B. 2)

Here _ is some proportionality function whose nature can be determined by satisfying

the continuity equation as follows:

V. W= VX. (YpxVz)+ hr. (V#xVa)

= V'X. (VpxVv)

= :o

i. e. _ is constant along streamlines. Therefore _, is a function of # and _ only and,

hence, no generality is lost by taking }, as unity, or

W= Vp xVa (B. 3)

No rigorous treatment of the conditions under which such families of surfaces exist

is given here. Maeder and Wood (reference 11) simply assume their existence whereas

Yih (reference 10) derives them as solutions to the differential equations which describe

streamlines. Additional justification for taking _ as unity is given by Yih as well as by
Benton (reference 45).
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FIGURE B. 1. PORTION OF A STREAMLINE SHOWN AS THE CURVE OF

INTERSECTION OF A PAIR OF STREAM SURFACES.
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For the case of a compressible (or two-phase) fluid, the above development is repeated

with the flux vector, P W, to obtain

W = VpxV_

One immediate advantage of this transformation is that the continuity equation is

satisfied identically because of

(B. 4)

V. (p W)= V. (VitxVa)=0

which is a vector identity. Also, the three velocity components are now expressed in

terms of two functions. Thus the problem is reduced to solving the resulting three

momentum partial differential equations for p, it and a.

Another advantage is the ease with which the wall boundary conditions are met.

portion of a wall boundary is considered as a surface of constant a, for example,

then a normal vector to this surface is given byVa. Thus

If a

W. n = 1-- VitxVa=O (B. 5)
P

which is again a vector identity. Placing it or a surfaces on the boundaries, therefore

automatically satisfies the wall boundary condition. This is consistent with the

geometric interpretation of the it and a surfaces as stream surfaces. With this in

mind, we tried two systems of arranging these surfaces in the flow channel.

In the first system, the hub and shroud are _ -surfaces and the blades are tt -surfaces

(figure B. 2a). It is shown in reference 10 that the total mass-flux across an area

bounded by two pairs of surfaces such as a= al, a = a2, it = Pl, and p =//2 is given

by

w= 0/2-//1) (a2- al) (B. 6)

Thus, making the hub be a surface a= 0, the shroud a= WT and the blades p = 0 and

it = 1.0, satisfied mass-conservation in the large. This "natural" way of arranging

the stream surfaces does, however, prevent a streamline from crossing from a blade

onto the shroud, say; i.e. the "edges" of the channel are forced to be streamlines

themselves. How much of a drawback this is is not clear because the streamlines a

finite distance away from the boundaries can still produce the counterrotation observed

in typical inducer flows. On the one hand it is easy to show that a streamline which

touches an edge must at least be tangent to it at the point of contact. On the other hand,

in two-dimensional potential flow near a corner, fluid particles on the boundary do go

around the corner if the corner angle is obtuse*. We also foresaw possible numerical

* This example was brought to our attention by Doug Anderson of the Lewis Research

Center, NASA, Cleveland.
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difficulties due to the "bunching" of stream surfaces near the boundaries resulting
from the relative rotation of the fluid in the passage.

For these reasons we decidedto try another system of steam surfaces (figure B. 2b).
In this system the entire channelboundary is made a a -surface of value _ = q, with

other a-surfaces nested inside. The p -surfaces radiate from the surface a = 0

(this degenerate surface is actually a curve) so that a typical cross section resembles

a spider web. With this system the question of streamlines moving across the edges

of the channel is immaterial. One very serious drawback is the singularity which

exists about the curve a= 0. We were unable to surmount the numerical problems

associated with this singularity in any practical way. A lesser disadvantage is the

discontinuity due to the coinciding of the surfaces _ = 0 and p = 1.0, similar to the

discontinuity which is present in an ordinary polar coordinate system where the rays

0 -- 0 and 0-: 2_ coincide. By use of a special algorithm which permitted the p -surfaces

in the vicinity of this apparent discontinuity to be two-valued, we were able to compute

p -derivates in the usual fashion.

The form of the governing equations is independent of which system of stream surfaces

is used. When the transformation (B. 4) is applied to the vector momentum equation

(I. 4) the result is

d d 1 dp

goVp+Vpx_-_7_-Vax _ _7/_--_- (VpxVa) dt

+ 2fl x (Vp x$'_) +pfl x (_xr) + pF
(B. 7)

The three scalar components of this equation can also be obtained from equations (H. 1),

(II. 2) and II. 3) by substituting into them

U --

1 O_ 0¢ 0¢ OP
rp ( O0 Oz O0 O_ )

1 O# Oz Oa Op
v= _ ( 0_ Or 0_ Or ) (B. 8)

1 OP Oa Oa OP }
w= r--P ( Or O0 Or O0

which are merely the components of equation (B. 4).

The resulting scalar equations contain pure as well as mixed second order partial

derivatives of p and a. The typical star of grid points for the corresponding finite-

difference equations would contain 19 points instead of the seven points we are now

using (figure H. 2). The drawbacks of this are apparent.

158



a---w T

--p--- 1.0

a) "Quasi-Orthogonal" System

p 0

p:= 1.0

b) "__Spider Web" System

FIGURE B. 2. TWO ARRANGEMENTS OF p- and a-SURFACES
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We felt that the above-mentioneddifficulties made the use of these complementary
stream functions an impractical approach at the present, compared to the direct
numerical solution of the untransformed equations as presented in this report. We
recommend, however, that the use of these (p,a) -surfaces be investigated further,

because, with the use of differential geometry, they may lead to a rigorous analysis of

the throughflow boundary conditions needed for the general three-dimensional problem

in turbomachinery.
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APPENDIX C

INSTRUCTIONS FOR USE OF

EXACT SOLUTION COMPUTER PROGRAMS

The main analysis program for the exact solution method (see Section II. A. 3) and

the accompanying data reduction program (see Section II. A. 6) are described in this

Appendix. Both programs are written in Fortran IV. Their inputs and outputs

are described, followed by their respective Fortran listings. In the case of the main

program a block diagram is included.

a) Main Analysis Program

The main program and its five subroutines have a common storage requirement of

39,638 locations. The running time per relaxation cycle can be estimated as in the

following example:

For a 5 x 5 x 22 grid there are 1585 independent discrete variables (see

equation (II. 14)). For M=3, a maximum of six values of R* will have to
be calculated for each of these variables (see Section II. A. 3) making a

maximum of 9510 star residuals to be computed during one relaxation

cycle. A UNIVAC 1107 can calculate approximately 40 star residuals per

second, this having been established experimentally. Thus it would take

at most 238 seconds, or four minutes for each relaxation cycle.

The input to the program consists of the cylindrical (r, 0, z) -coordinates of the

selected grid points, certain numbers which control the nature of the relaxation

processs, information describing the fluid, and initial values for the field of velocity

components and pressures. A definition of these input quantities follows. For the

exact format in which these inputs are to be given, please see the corresponding

Fortran listing.

IMAX, JMAX,
KMAX:

The number of radial (hub-to-shroud), circumferential (blade-

to-blade) and throughflow (upstream-to-downstream) grid stations,

respectively. I= 1 on the hub andI= IMAXonthe shroud; J= 1

on the pressure (driving) blade surface and J = JMAX on the suction

(driven) blade surface; K -- 1 on the upstream throughflow boundary
and K = KMAX on the downstream one.

KLE, KTE: The K-index of the axial stations corresponding, respectively, to

the blade leading and trailing edges.

R(I, J, K): The radial coordinates, r, or the grid points.

T(I, J, I_: The circumferential coordinates, 0 (in radians), of the grid points.
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Z(I, J, K): The axial coordinates, z, of the grid points.

TITLE: Any type of run identifying information which may consist of up to
80characters (including blank spaces). Noneof this information
is processedby the computer.

KOUNT: The number of the first cycle of the current run (for "book-keeping"

reasons only).

NUM: The number of relaxation cycles to be executed by the current run.

If NUM = 0, no relaxation is performed: All residuals and the

overall RMS value are computed and the regular output is presented.

M. The number of adjustment magnitudes to be tried with each variable

(see Section II. A. 3). Recommended: M = 3.

NSEQ(1),

NSEQ(2),

NSEQ(3),

NSEQ(4):

The sequential order in which the four variables are to be adjusted

at each grid point where the four variables are identified by the

computer as follows: uis 1, vis 2, wis 3 andpis 4. Thus, for the

recommended sequence (see the discussion following Run E-6 in

Section H. B. 3), NSEQ(1) = 4, NSEQ(2) = 3, NSEQ(3) = 2, NSEQ(4) = 1,

resulting in an adjustment of sequence of (p, w, v, u).

DMAX(1),

DMAX(2),

DMAX(3),

DMAX(4):

The four starting trial adjustment magnitudes 5u, Sv, 6w, Sp,

respectively (see Section II. A. 3). Recommended: DMAX(1) =

DMAX(2) --DMAX(3) = DMAX(4) = 0.i.

A: The successive adjustment ratio,

Recommended: a = 0.1
(see Section H. A. 3).

CRIT:

E:

The accuracy criterion, such as the quantity It 2 rt ' 1

The convergence parameter, ,, of equation (H. 19).

of equation (II. 19).

REV, DLIQ,

PSAT, TT,

VISC:

The values of rotative speed, l_, liquid density, Pf/go, saturation

pressure, Psat, vaporization constant, T*, and kinematic viscosity,
v , respectively.

U(I, J, K): The values of radial velocity, u, at each grid point.

v(I, J, K): The values of relative circumferential velocity, v, at each grid point.

W(I, J, K): The values of axial velocity, w, at each grid point.

P(I, J, K): The values of static pressure, p, at each grid point.

This completes the list of input quantities.
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The output of the program consists of punchedand printed output. After executing
NUM relaxation cycles the entire list of quantities, starting with TITLE, is punched
onto cards in exactly the same format and order as for the corresponding inputs.
The values of NUM, DMAX(1), DMAX(2), DMAX(3), DMAX(4), U(I, J, K), V(I, J, K),
W(I, J, K) and P(I, J, K) are the latest values. Thus the punchedoutput of one run
may be used to continue the same run at a later time without having to rerun the
relaxation cycles of the first run.

The first line of the printed output consists of the entire contents of TITLE, thereby
providing any desired way of identifying the computer run. The size of grid is
identified next, followed by the values of M, a, _,Pf/go, Psat, T* and v. Then the

sequence in which the variables are adjusted, is stated, rhe next portion of the

printed output concerns the cycle-by-cycle progress of the relaxation scheme. It

is printed in columns with the following headings:

RE LAX

CYCLE:

The sequential number of each relaxation cycle, the first cycle

of the current run having the number KOUNT as given in the

input.

NO. OF

TRIES:

The total number of trial adjustments that were made during each

cycle. Note that this number cannot exceed 2 x M x D, where D is

given by equation (II.14).

TOTAL RMS

RESIDUAL:

The root-mean-square value of all residuals in the entire grid

of points.

MAX. RMS

RESIDUAL:

The largest root-mean-square value of the four point residuals

as given by equations (II. 5) through (II. 8).

MIN. RMS

RESIDUAL:

The smallest root-mean-square value of the four point residuals

as given by equations (II. 5) through (II. 8).

M AGNITUDE

OF BIGGEST

ACCEPTED

ADJUSTMENT

FOR U, V, W, P:

The magnitudes of the largest adjustments _u,

were accepted during each cycle.

6v, Sw and Sp which

The last portion of the output presents the latest values of the variables at all grid

points. This information is printed in columns with the following headings:

I,J, K The three indexes of each grid point. Recall that I -- 1 on the hub

and I = IMAX on the shroud; J = 1 on the pressure (driving) blade

surface and J=JMAX on the suction (driven) blade surface; K = 1

on the upstream throughflow boundary and K = KMAX on the

downstream throughflow boundary.
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U: The radial velocity component, u.

V: The relative circumferential velocity component, v.

W: The axial velocity component, w.

P: The static pressure, p.

D: The point density, p/go"

RES: The sum of the squares of the four point residuals, as given

by equations (II. 5) through (H. 8).

The program will continue until either the largest root-mean-square of the four point

residuals is less than CRIT times E (see equation II. 19) or until NUM relaxation

cycles have been executed. Accordingly, the message "CONVERGED" or "MAXIMUM
NUMBER OF CYCLES EXECUTED" will be printed on the output sheet. In either case,

the computer will stop with an input tape end-of-file condition.

b) Data Reduction Program

The Data Reduction Program and its two subroutines have a common storage require-

ment of 23,757 locations. A UNIVAC 1107 requires between 25 and 30 seconds to

reduce the data of a 5 x 5 x 22 grid.

The input to the Data Reduction Program is identical to the input to the Main Analysis

Program. Thus, the input describing the grid point coordinates can be combined with

the punched output of any given run of the Main Analysis Program to form a complete

input set for the Data Reduction Program.

The first line of the output consists of the entire contents of TITLE, thereby giving

the reduced data exactly the same identification as the corresponding main analysis

run. The second line identifies the number of the relaxation cycle whose results are

being reduced. Next, a station-by-station listing is given of hub-to-tip distributions

of quantities which are area-averaged over annular regions on each axial station. The

column headings are:

AXIAL

STATION:

The _ -value of each station. The stations corresponding to the

blade leading edge (K = KLE) and trailing edge (K = KTE} are so

designated.

RADIA L

STATION: The mean r-value of each annular region.

RADIAL

VELOCITY: The area-averaged value of V r.
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TANGENTIAL
VELOCITY:

AXIAL
VELOCITY:

STATIC
PRESSURE:

DENSITY:

The area-averaged value of V@.-

The area-averaged value of VZ.

The area-averaged value of p.

The area-averaged value of P/go"

This is followed by a station-by-station listing of the hub-to-tip distributions of

blade-to-blade pressure loadings, calculated simply as

Ap -- pp - Ps

The first column lists the values of z and the remaining columns (read from left to

right) list the hub-to-tip values of Ap for each annulus.

The last portion of the output gives the following mass-averaged, overall performance

parameters:

Inlet and exit pressure head: _ as calculated from equation (II. 26).

Inlet and exit absolute velocity head: 1/2 V 2, _as calculated from equation (II. 28).

Total head rise: AH, as calculated from equation (II. 30).

Shaft power per channel: Ps, as calculated from equation (II. 31).

Overall efficiency: y , as calculated from equation (H. 32).

Mass flow rate per channel: w T, as calculated from equation (II. 27).

This program will also terminate with an input tape end-of-file condition.
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Read: Grid PointCoordinates

1
_alculate

{ aACO___BBian
\ Coefficients
_(eq's A. 5)

1
/

Read:

TITLE

99

tRead: KOUNT,
NUM, M, NSEQ (1)
....NSEQ(4),
_u, Sv, _w, _p, a,

CRIT, e

I
/Read: l_ ,

Pf

_oo' Psat'T*' v

"Read: Initial

Velocities &

Pressures

_pCoa_tul:t_] tA:_s_

_,X (eqI'7) J

FIGURE C. 1

450

A(/ADSjequentially

ust Local _

IV---_riables Except I

IWhere Fixed by]

_Boundary /
_ Conditions J

I
I
I
I
I

Calculate t

Local STAR

Residual:

R*i,j,k (eq II.16

"DO LOOP"

YES

1
fOUTPUT

_k, ROUTINE )

Calculate All_
int RESIDuals ]

"_ (eq's II. 5-8)J

360

/k=2 D°F°r \•., KMAX\

--\]=1,... ,JMAX ]-----

...

I Caleulate

Root-Mean-Square
_ Residual

(eq's II. 15 & 18)

561 l 562

Initialize

_u, _v, 6w, Sp

for Next Cycle

YES

a) BLOCK DIAGRAM FOR MAIN ANALYSIS PROGRAM

(Numbers above boxes refer to key Fortran statement numbers in the

main program)
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Ubroutine
ESID

FIGURE C. 1 (Continued)
99

Satisfy Wall Boundary
Conditions:
eq _. 9 on blades
eq A. 10on hub, shroud
eq's A. 9 & 10 at "edges"

351

Calculate All
Derivatives:

0 0 0
08'

367

Convert All Derivatives to

Cylindrical Coordinates:
0 0 0

Or' O0 ' 3_

(eq's A. 3)

385

I Calculate Loss

Terms:
Fr, F0, F_

(Only if v¢ 0)

L 391

Calculate Point

Residuals:

R1, R2, R3, R4

(eq's II. 5-8)

RES (I, J, K)=

RI2 + R22 +

R32 + R42

b) BLOCK DIAGRAM FOR SUBROUTINE "RESID"

(Numbers above boxes refer to key Fortran statement numbers in the

subroutine)
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FIGURE C. 1 (Concluded)

_Dbroutine
)---"

445

Restore Local
Variables and
Affected Residuals
to Original

Temporarily
Store Values of
the SevenAffected
Residuals

RHLD = R'i, j, k NOTE: The symbol "x"
stands for u, v,DX= 6x
worp.

HX = xi, j,k

l

I _ "DO LOOP"

Do M times

I

42o

Ixi, j k=HX+DX _- 1' i

I I
i I

421

Recalculate 1 432 433

Residual:L°calStar _ J,k LR'i, DX = -DX DX = -aDXValues

(eq If.16)

430 /_ _ I

YES Y2 / _s _ N2_1

c) BLOCK DIAGRAM FOR SUBROUTINE "ADJ"

(Numbers above boxes refer to key Fortran statements in the subroutine)
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C

C

C

C
C

C

C

TABLE C. 1

FORTRAN IV LISTING OF EXACT ANALYSIS COMPUTER PROGRAM

THREE-DIMENSIONAL FLOW ANALYSIS FOR ROTATING CHANNEL

OF ARBITRARY ROUNDARY SHAPE

USING METHOD OF STAR RESIDUALS IN TERMS OF

RELATIVE VELOCITY COMPONENTS AND PRESSURE

TRW ACCESSORIES DIVISION, CLEVELAND 6AUG65

9 'i)

DIMENSION TITLE(16)

COMMON U(10•10,22),

1 DIlO,lO•22),R(10,1

2 DELXI4I.NSEQ[4],
AZ(10,IO,22)•BR(]O

4 CTIlO•IC.22).CZ(]O

5 IRSTAR,DX,I,J,K•II

READ 1001 ,

READ 1008•

READ 1008

READ 1 ,?,C)8 ,

CALL JACOB
READ 10OO,

PRINT IG04,

READ i001 •

READ 1002 ,

READ 1002 ,

READ 1 ()02,

READ 1002 ,
READ 1002,

I'_AX.JMA

(((RCI

({ITII
lCIZ(I

VI]O,IO,22),WIIO,IO,22)•P(IO,IO,22)'

O,22),TIIO,IO,22),ZIIO,tO,22),FR,FT,FZ,DMAX(4}'

RES(IO,I0,22),ARI]0•IO,22),AT(IO•]O'22)'

•IO,22),BTI]O,IO,22),BZ(I_,IO•22),CR(1_•]_,22)_

•10,22),XH,RSTAR,TT,PSAT,DLIQ,REV•A,M*NVAR•NTR,

•JJ,KK•IMAX,.JMAX,Kr.'AX,VISC,NBO,KLE•KTE

X,KM4X•KLF,KTE

,J.K)•I=I,IMAX) •J=].JMAX),K=I.KMAX)

.J•K),I=] .IMAX).J=],JMAX),K=I•KMAX)

.J.K).I=I.IMAX),J=I.JMAX).K=I,KMAX)

TITLE

TITLE
KOUNT,NUM•M,(NSEQ(

(DMAX(LI.L=I•A}•A.

REV,DLIQ,PSAT

(Ill;II.J,K).I=I

(((V(I,J,K),I=I

(((W(I,J,K),I=I

REA.) 1002, (((PII•J,K).I=I

NMAX=KOIINI +NEJM
PRINT 1007, iMAX,J%AX,KMAX,M,

PRINT 1006. (NSEQ(L}.L=I.4)

NTR=O

ANR = 4*IMAX_JMAX_KMAX

DO 150 L=I•4

150 DELXIL)=DMAX(L)
CALCULATE POINT DENSITIES

DO 501 K=I,KMAX

DO 50] J=I,JMAX

DO 591 I=I,IMAX

IF(TT}502,503.502

5(32 CALL STATE

GO TO 501

503 D (I,J•K)=DLIQ

501 CONTINUE

CALCULATE ALL POINT RESIDUALS

NBD=I

DO 350 K:I•KMAX

DO 350 J=I•JMAX

DO 350 I:I,IMAX

IF(D (I,J•K))500.500,500

5o0 CALL RESID
_50 CC)NTINIIE

PRINT 1012
CALCULATE TOTAL ROOT-MEAN-SQ_JARE

467 RT=O.O

RESMAX = 0.0

RESMIN = RES(1,1.I)

DO 368 K=I,KMAX
DO 368 J=],JMAX

DO 368 I=I,IMAX

L)•L=I,4)

CRIT,E

,TT,VISC

• IMAX) ,J=I,JMAX}•K=] •KMAX)

• IMAX) ,J=I..-;MAX).K=I,KMAX)

.IMAX) _.J=] .JMAX) _.K=I ,KMAX)

,!MAX) .J=I,JMAX},K=],KMAX}

A,REV,DLIQ,PSAT,TT,VISC

RESIDUAL

169



402

403

404

368

1_1

370

IFIRESII,J,KI-RESMAX}403,403,402

RESMAX=RESII,J,K)

SO TO 36P
IF(RES(I,J,KI-RESMIN)404,368,368

RESMIN = RES(I,J,K)

RT=RT+RES(I,J,K)

RMS = SQRT(RT/ANR)

RESMAX=SQRT(RESMAX/4.)

RESMiN=SORT(RESMIN/4.}

PRINT 1013, KOUNT,NTR,RMS,RESMAX,RESNIN,(DMAX(L),L=I,4)

DO 151 L=1,4

DMAX(L}=O.O

IF(RESMAX'CRIT*E)369,369,370

KOUNT=KOUNT+I

NTR=O

IF(KOUNT-NMAX)360,360,371

C-START SUCCESSIVE VARIATIONS

360 DO 460 KK=2,KMAX

DO 460 JJ=I,JMAX

DO 460 II=I,IMAX

IRSTAR=I

CALL STAR

DO 460 L=1,4

NVAR=NSEQIL}

GO

111 IF

611 IF

222 IF

481 IF

482 IF

533 IF

485 IF

471 IF

472 IF

486 IF

487 IF

450 CAL

46¢ CON

DO

IF

561

CYCLE

TO (lll,222,33_,450),NVAR

KK-2)46h,46P,611

(II-1)w(IMAX-II))460,460,450

KK-2}46n,&6_,481

KK-K_AX)450,482,460

(JJ-I)_(J_AX-JJ))460,460,450

KK-2)460,48_,486
(JJ-1)*(J#AX-JJ))460,460,47]

(II-l)*(IMAX-II))460,472,450

AZ(II,JJ,KK))460,450,460
KK-KMAX)487,460,460

(JJ-!)_[JMAX-JJ))460,460,450

L ADJ

TINUE

153 L:I,4

(DMAX(L)] 561,562,561

562

153

C

98

DELX(L)=DMAX(L}

GO TO 153

DELX(LI=DELXIL}*A

CONTINUE

GO TO 467

_** OUTPUT ROUTINE

PUNCH 1000, TITLE

KOUNT=KOUN[-I

PUNCH i001,

PUNCH 1002,

PUNCH 1002,

PUNCIt lOS,2,

PUNCH 1002,

PLJNCIt i'502,

PUNCtt ICO2,

PRINT 1004,

DO 97 K=I,K_IAX

PRINT 1005

KOIJNT ,NUM, M, (NSEQ (L ),L = I, 4 )

(DFL. X(L},L=I,4I,A,CRIT,E

REV,DI_ IQ, P_AT,TT ,VISC

(((!J(I,J,K),I=I,IMAX},J=I,JMAX},K=],KMAX)

( ( (V( I ,J,K }, I =1 , IHAX ) ,J=] ,JMAX } ,',<=I,KMAX )

( ( (W (I ,J,K ), I =] , IHAX ) ,J=1 ,JMAX ) ,K= I ,KMAX }

(((P(I,J,K),I=I,IHAX) ,J=I,JMAX),K=I,KMAX)

TITLE

97 PRINT 1003, ( (I,J,K,U(I,J,KI,V(I,J,K),WII,J,K),P(I,J,K),F)(I,J,K)

1 ,RES( I ,J,K} , I=I , IMAX } ,J=I,JMAX)
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GO TO
369 PRINT

GO TO

371 PRINT
GO TO 9
l(ll_

1000 FORMAT
I00] FORMAT

1002 FORMAT

1003 FORMAT

I004 FORMAT

I005 FORMAT

llHD, 1

1006 FORMATI

IW IS 3, P

1007 FORMAT( 13,

1 5H REV=, 1
2 lPE10.,'4,5X

1098 FOR,VAT(lP6E
1012 FORMAT I6H R

1 71_,MIN RMS,

2 6H CYCLE,3

3 13X,1HP/)
ICJI? FORMAT( 16,1

1014 FORMAT(/20X

](315 FOR_,'AT ( /2(_X

EN r)

99
1014

98
1015

8

INPUT-OUTPUT

16A51
2613}

8F10.7)

313,1P6EI8.6)

IGA5///)

FORMATS

II2X,IHI,2X,IHJ,2X,1HK, 9X,1HU,17X,IHV,17X,IHW,17X,1HP,17X,

5X',_HRES/ ]

2X23HADJUSTMENT SEC, UENCE IS ,411,38H WHERF U IS 1,, V IS 2,,

IS 4.//I)
IHX,12,1HX,12,SH GR ID,GX,2HM: , I 2,6X,2HA:, IPEIO.411
PE ] 0.4,5X, 5:tDL IQ= , lPEI O. 4,,5X , 5HPSAT: , lPEIO.4,SX , 3H TT = ,

,_HVISC:,IPElO,41)

1_.7)
E:LAX,3X,SHNO OF,SX,gHTOTAL RMS,TX,THMAX RMS,7X,

16X,44HMAGNITUDE OF BIGGEST ACCEPTED ADJUSTMENT FOR/

X,5HTRIES,3 (6X,8HRESII)UAL) , 17×,IHU, 13×,1HV,13X ,]HW,

8,1PBE14-4,8X,IP4EI4.41

,OHCONVERGED/]

,_HMAXIMfJM NUMBER OF CYCLFS EXECIITEDI)
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SUBROUTINEJACOB
CALCULATION OFt JACOBIAN COEFFICIENTS
COORDINATETRANSFORMATION

FOR GENERAL-TO-CYLINDRICAL

]6

COMMON U(IO,10,22),V(IO,10,22),W(IO,IO,22),P(IO,lO,22),

I D(IO,10,22}.R(IO,10,22).T(10,10,22),ZIIO,IO,22),FR,FT,FZ,DMAX(4}'

2 DELX(4).NSEO(4). RES(IO,IO,22),AR(IO,10,22),AT(IO,IO,22),

3 AZ

4 CT

5 IR

DO

DO

DO

IF

RA

TA

ZA

GO

4 IF

5 RA

TA

ZA

GO

6 RA

TA

ZA

I IF

8 RB

TB

ZB

GO

9 IF

10 RB

TB

ZB

GO

11 RB

TB
ZB

12 IF

13 RC

TC

ZC

GO

14 IF

15 RC

TC

ZC

GO

RC

TC

ZC

17 D

(I0,I0'221'BR(I0'I0'221 ,BT(IO,IO,22)'BZIIO'IO'22)'CR(IO'IO'221'

(I0,I0,22),CZ{ lO,IO,22}'XH'RSTAR'TT'PSAT'DLIO'REV'A'M'NVAR'NTR'

STAR,DX,I,J,K,II'JJ'KK'IMAX'JMAX'KMAX'VISC'NBD'KLE'KTE

18 K=I,K_AX
!8 J=I,JNA×

18 I=I.IMAX

(I-i)3,3,4

= R(I+I,J,K)-R(I,J,K)

= T(I+I.J.K)-TII.J.K}

= "Z( I+I.J,K )-Z( I .J.K}

TO 7

( I- IMAX }5,6,6

= (R( I+I.J,K)-R( I-I ,J,K) )/2-

= (T( I+] .J.K )-T(I-I,J,K) )/2.

= (Z ( I+l .J,K }-Z ( I-] ,J.K) )/2.

TO 7

= R(I,J,K)-R(I-I.J,K)

= T(I,J,K)-T(I-I.J,K)

= Z(I,J,K}-Z(I-],J,K)
(J'-I)8,8,9

= R(I,J+I,K)-R(I,J,K)

= T(I.J+I.K)-T(I.J.K)

= Z(I.J+I,K)-Z(I.J.K)

ro ] 2

(J-JMAXIIO,] l,ll

: (R( I .J+l .K)-R ( I .J-I,K) }12.

= (T( I .J+!.K)-T( I.J-] ,K) }/2.

= (Z( I .J+I,K)-Z (I .J-I.K) }/2.

TO 12

= R(I,J,K)-R{I,J-I.K}

= T(I,J,K}-T(I.J-I.K)

= Z(I,J,K)-Z(I.J-1,K)

(K-I)13.13.]4

= R(I,J.K+II-R(I,J,K)

= T(I,J.K+I)-T(I.J.K)

= Z(I.J.K+])-Z(I,J,K)

TC 17
(K-KMAX }15,16,16

= [R ( I ..J.K+I )-R ( I ,J,K-I ) )/2.

: (T( I .J,K+] )-T( I ,J,K-] ) )/2-

-- (Z(I.J.K+I)-Z(I.J.K-]))/P.

TO 17

: R(I,J,K)-R(I,J,K-I)

= T(I,J.K)-T( I,J,K-I}

= Z(I J,K)-Z(I.J.K-1)

= RA*( B_ZC-TC*ZB)+RBW(TC*Z A-TA*ZC)+RC_(TAWZB-TBWZA)

AR ( I ,J ,K

BR ( I ,J ,K

CR ( I .J ,K

AT( I .J.K

BT( I .J ,K

CT(I,JtK

AZ(I,J,K

BZ(I.J,K

= TBwZC-TC*ZB

: TC_ZA-TA*ZC

= TAwZB-TRwZA

= ZEwPC-ZC*RB

= ZC*RA-ZAWRC

= ZA_RB-ZB*RA

= RB_TC-RC_TB

= RC*TA-RA*TC

/D

/D
/D

/D

/D
/D

/D

/D
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18 CZI [,J,F-,)=IRA*TB-RB*TAI/D
RETURN ....
END

/ i

173



S

C-REDUC

C

1

2

3

UBROUTINE ADJ

TION OF TOTAL RESIDUAL BY SUCCESSIVE VARIATIONS OF U, V, W, P

OMMON U(IO)IO,22),V(IO)IO)22),W(IO,IO,22),P(IO)lO,22) )

D(IO,IO,22),R(10,10,22),T(IO,10)22),ZIIO,IO,22),FR)FT,FZ,DMAX{4)'

DELXI4),NSEO(4) , RES( I0,I0,22 } ,AR(I0,I0,22) ,AT( 1n,]0,22 ) ,

AZ (I0, i0,22) ,BR( ] q,I0,22) ,BT(10,10,22) ,BZ(10,10,22) ,CR( I0,10,22 ) ,

4

5

C U RR E hiT

HI=RES

H2=RES

H3=RES

H4=RES

H5=RES

H6=RES

H7=RES

CT ( I0 , 19,22 ) ,CZ ( I0, i0,22 ) ,XH ,RSTAR ,TT ,PSAT ,DL IC, REV ,A ,M ,NVAR ,NTR,

IRSTAR,DX, I ,J,K, I I ,JJ,KK, IMAX ,JMAX ,KMAX,V ISC, NBC),KLE,KTE

QUANTITIES TEMPORARILY STOREDVALUES OF ALL AFFECTED

II,JJ,KK)

II-I,JJ,KK)

II+I,JJ,KK)

II,JJ-I,KK)

II,JJ+I,KK)

II,JJ,KK-I)

II,JJ,KK+I)

RHLD=RSTAR

DX=DELX(NVAR}

HU=U(II,JJ,KK)

HV=V(II,JJ,KK)

HW=W(II,JJ,KK)

HP=P(II,JJ,KK}

HD=D(II,JJ,KK)

C-SUCCESSIVELY APPLY TRIAL VARIATIONS TO

5 DO 480 MA=I,M

420 'SO [0 (422,423,424,425),NVAR

422 U(II,JJ,KK)=HU+DX

GO TO 42]

423 VIII,JJ,KK)=HV+DX

50 TO 421
424 W(II,JJ,KK)=HW+DX

GO TO 421

425 P(II,JJ,KK)=HP+DX

IF(TTI461,421,461

461 I=II

J=JJ
K=KK

CALL STAT_

42L NTR=NTR+]

IRSTAR=2

CALL STAR
IFIRHLD-RSTARI430,430,431

431 IF(ABS(DX}-DMAX(NVAR))457,457,920

920 DMAX(NVAR)=ARS(DX)

GO TO 457

430 IF(DX)433,457,432

432 DX=-DX
GO TO 420

433 DX=-A*DX

480 CONTINUE

C-RESTORE ALL AFFECTED QUANTITIES TO ORIGINAL

!;(II,JJ,KK)=HU

V(II,JJ,KK)=HV

W(II,JJ,KK)=HW

P(II,JJ,KK)=HP

D(II,JJ,KK)=HD

44_ RSTAR=RHLD

RES(II,JJ,KK)=H!

IF(II-I)446,446,447

447 RES(II-1,JJ,KK)=H2

U, V, W, P
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446
449

448

451

450

453

452
455

454

456

457

IF(II-IMAXI449,448,448
RES(II+I,JJ.KKI=H3

IFCJJ-I)450,450,451

RES(II.JJ-1,KK)=H4
IF(JJ-JMAX)453.452,452

RESIII,JJ+I,KK)=H5

IF(KK-]}454_4549_55

RES(II,JJ,KK-I)=H6
IF(KK-KMAX)456,457_457
RES(II,JJ,KK+I)=H7
RETURN

END
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SUBROUTINE DLOSS
CALCULATION OF LOSS TERMS IN MOMENTUM EQUATIONS

COMMON U(10,IO,22),V(10,10,22),W(10,IOt22),P(10']0'22)'
I D(IO,10,22),R(10,IO,22),T(10,10,22),Z(10,10,22),FR'FT'FZtDMAX(4)'

2 DELX(4),NSEQ(4), RES(IO,IOI22),AR(IO,IO,22)tAT(10,IO'22)'

3 AZ(lO,IOt22),BR(]N,IO,22),BT(]O,10,22),BZ(IO,IO,22)tCR(10'IO'22)'
4 CT(10,IO,22),CZ(10.10,22),XH,RSTAR.TT.PSAT,DLIQ,REV'A'_'NVAR'NTR'

5 IRSTAR,DX,I,J.K.II.JJ.KK,IMAX,JMAX,KNAX,VISC.NBD'KLE'KTE

FR=C.O

FT=O.O

FZ=O.G

RETURN
END
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SUBROUTINE RESID

CALCULATION OF POINT RESIDUAL

COMMON U(lO,lOt22),VI10910,22),W(lO,lO,22)_P(lO,lO,22),

1 DI10,10,22),R(10,10,22),T(10,10*22),Z(10,lO,22),FRtFT,FZtDMAX(4)'
2 DELX(4),NSEQ(4), RES(lO,10,22),ARI]O,lO,22),AT(10,]O,22),

3 AZIlO,lO,22),BR(10,10,22),BTI10,lO,22),BZI10,10,22)_CR(lO,lO*22)'

4 CT(lO,lO,22),CZ(lO,1C,22),XH,RSTAR,TT,PSAT,DLIQ,REV,A,M,NVAR_NTR'

5 IRSTAR,DX_I,J,K,II,JJ,KK,IMAX_JMAX,KMAX,VISC,NBD,KLE_KTE

IF(NBD1400,351_99

CHECK WALL BOUNDARY CONDITIONS

99 IF(K-2)B51,lOC,IOB

C _*_ K=2 *_*

100 IFIII-II*IIMAX-II}400,]21,124

121 IF(IJ-I)*(J_AX-J))400,102,]22

]22 [F(AZ(I.J.K}}123.351.123

123 W(I,J.K)=-U(I,J,K)WAR(I,J,K)/AZ(I,J,K)

GO TO 351

124 IF((J-]I_(JMAX-J))400.]11.351

tO2 DDD=(BT(I,J.K)IR(I,J.K))I(AR(I.J,K)*BZ(I,J,K)-BR(I,J,K)WAZ(I'J'K}}

W(I.J,K) = -V(I,J,K)WAR(I,J,K)WDDD

GO TO 351

tO3 IF(K-KNAX)108,1C4,400

C __* K=KMAX __

104 IF((I-I)*(IMAX-I))400,105,106
]05 U(I,J,K) = -W(I*J,K)*AZII,J,K)/AR(I,J,K)

i06 IF(IJ-I)4(JNAX-J)}400,]07,351

107 V(I,J,K) = -R(I,J,K)*(U(I.J.K)_BR(I.J,K)+W(I.J.K)*BZ( ,J,K))/

1 BT(I.J,K)

GO TO 351

C .ww K IS NEITHER 2 NOR KMAX ***

IF((I-I)*(INAX-I)I400,109,IlO

IF((J-I)_(J_MAX-J))400.112,]14

IF({J-I)W(JMAX-J))4OO,I]I,q51

IO8

109

iI 0

111 W(I,J,K) = -(U(I,J

1 BZ(I.

GO TO 351

tl2 DDD=(BT( I,J,K)/R( I

'.';(I,J,K) = -V(l,J,

U(I,J.K) = V(I.J.K

GO, TO 351

114 U(I,J,K} = -W(I,J,

ALL [)FR I V-\T IVr_

IF ( I-1 )40C ,354,353
UA:(U I+I,J,K)-U( I

VA=(V I+I,J.K)-V( I

WA=(W I+I,J,K)-W(I

PA=(P I+I,J.K)-P(I

IFITT 51] .357.511

,K)*BR( I ,J,K}+V( I ,J,K)WRT ( I ,J,K)/R( ,J,K))/

J.K)

CALCULATE

351

354

I.J.K)-V{I-]

I.J.KI-W(i-I

I.J.K}-P(I-I

521,357,52]

I,J,K)-D(I-1

357

,J,K}IIIAR(I,J,K)WRZ(I,J,K)-BR(

K}*AR(I.J,K)*DDD

)*AZ(I,J.K)WDDD

K)_AZ(I,J,K}/AR(I,J,K)

,J,K))

,J,K))
,J,K))

,J,K})

51l DA=(D I+I,J,K)-D(I,J,K))
GO TO 357

t53 IF(I- MAX)355,356,400 ....
355 LJA=(U I,J,K)-L;(I-1,J,K))

VA=(V

WA:(W

PA=(P

IF(TT

521 DA=(D ,J,K))

GO TO
355 UA=(U(I+I*J,K)-U(I-],J,K))/ 2,

VA=(V(I+I,J,K)-V(I-],J,K))/ 2,

I.J.K)*AZ(I.J.K))

,J,K))

,J.KI)

,J,K))
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WA:(W(I+I,J,K)-W(I-1,J,K))/ 2.
PA:(P(I+I,J,K)-PiI-1,J,K))/ 2.

IF(TT)531,357,531

5_] DA=(D(I+I,J,K)-D(I-1,J,K))/ 2,

357 IF(J-1)400,359,358

359 UB:(UI I,J+I,K)-UII 'J'K_l

VB=IVII,J+I,K}-V(I,J,K))

WB=IW(I,J+I,K}-WII,J,K))

PB=(P(I,J+I,K)-PII,J,K))

IF(TT}541,362,541

541 DB=(D(I,J+I,K)-D(I,J,K)I

GO TO 362

358 IF(J-JMAX)_60,361,400
361 UB=(U(I,J,K)-U(I,J-I,K))

VB:(V(I,J,K)-V(I,J-],K))

WE=(W(I,J,K)-W(I,J-1,K))

PB=(P(I,J,K)-P(I,J-1,K))

IF(TT)551,362,551

551 DB=(D(I,J,K)-D(I,J-I'K))

GO TO 362

360 UB=(U I,J+I,K)-U(19J-],K))/ 2-

VB=(V I,J+],K)-V(I,J-I,K)}/ 2.

WB=(W I,J+I,K)-W(I,J-I,K))/ 2.

PB=(P I,J+],K}-P(I,J-I,K))/ 2.

IF(TT 561,362,561
561 DB=(D I,J+I,K)-D(I,J-I,K))/ 2.

162 IF(K- )400_364,363
364 UC:(fl I,J,K+I)-[J(I,J,K))

VC=(V I,J,K+I)-VII,J,K)}

WC=(W I,J,K÷I)-W(I,J,K))

PC=(P I,J,K+I)-P(I,J,K))

IF(TT 571,!67,57]

57] DC=(D I,J,K+I}-D(I,J,K))

GO TD 367
363 IF(K-KMAX)365,R66,400

366 UC=({I(I,J,K)-U(I,J,K-I)}

VC=(V(I,J,K)-V(I,J,K-]))

WC=(W(I,J,K)-W(I,J,K-t)}

PC=(P(I,J,K)-P(I,J,K-I)}

IF{TT)58],267,581

58] 9C=(D(I,J,K)-_(I,J,K-I))

GO TO 367

365 UC=(U I,J,K+I)-U(I,J,K-1))/ 2.

VC=(V I,J,K4])-V(I,J,K-1))/ 2.

WC=(W I,J,K+I}-W(I,J,K-I)}/ 2.

PC=(P I,J,K+])-P(I,J,K-1))/ 2.

IF(TT 591,367,591

5_I nc=(r) I,J,K+II-D(I,J,K-I))/ 2,

CONVERT ALL DERIVATIVES FROM GENERAL

367 _JR=AR

UT=AT

UZ=AZ

VR=AR

VT=AT

VZ=AZ

WR=AR

WT=AT

WZ=AZ

PR=AR

PT=AT

I,J,K)*UA+BR

I ,J,K)_UA+BT

I ,J,K )*UA+E.Z

I ,J,K )_VA+5R

I ,J ,K }*VA+E_T

I,J,KIwVA+BZ

I,J,KI*W_+BR

I,J,K)WWA+BT

I,J,K)*_A+RZ

I,J,K)*PA+BR

I,J,K)*PA+BT

I ,J,K

.t,J,K

I ,O ,K

I ,J,K

I ,J ,K

I,J,K

I ,J,K

I .J,K

I .J,K

I ,J ,K

I ,J,K

*LI_+CR

*I;B+CT

*UB+CZ
*V_3+CR

_VB+CT

*VB+CZ

*WB+CR

_WB+CT

_WR+C?

_PR+CR

wPR+CT
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TO CYLINDRICAL

! ,J ,K )*I;C

I ,J,K)wIIC

I ,J,K)wUC

I,J,K}*VC

I,J,K)wVC

I,J,KIwVC

I,J,K)*WC

I,J,K)wWC

I,J,KI*WC

I,J,K}wPC

I,J,K)_PC
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379

"475

38O

PZ=AZ(
IF(TT)

DR=ARC

DT=AT(

DZ=AZ(

GO TO

DR=O.O

DT=O.O
DZ=O.O

(JtJ=UI!

VV=Vll

WW=W(I

DD:D(I

I,J,K)*PA+BZ(I,J,K)WPB+CZII,J,K)wPC
370,375,37'3

I,J_K)_DA+BR(I,J,K)_DB+CR(I,J_K)_DC

I,J,K)*DA+BT(I,J,K)WDB+CT(I,J,K)WDC

I,J,K)WDA+BZ(I,J,K)_DB+CZ(ItJ,K)_bC

38O

,J,K)

,J_K)

_J_K)

9J,K)

RR=R(i,J,K)

CD.LCULAT£ LOSS TERMS

IF(VISC)385,390,B85

385 CALL DLOSS

GO TO _gl

390 FR=O.O

FT=OoO

FZ=O,O

CALCULATE POINT RESIDUAL

3')1 RI=PR/DD +tJU*IJR+VVWUT/RR+WW_lJZ-( (VV+RR*REVI**2,)/RR+FR

R2 =PT/(DD*RR) +UU.W VR+VV*VT/RR+WW*VZ+UU*VV/RR+2, wUIJ*REV+FT

R3=PZ/DD+UU_WR*VV_WT /RR+NW_WZ +FZ
R4=UtJ/RR+UR+VT/RR+WZ+(IIU_DR +VV_DT /RR+WW_DZ )/DD

RES([,J,K}=RI_RI+R2_R2+R3WR3+(R4_REV*RI5,I,KLEI)_2o

_C)O RETURN

END
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SUBROUTINE STAR

CALCULATION OF LOCAL STAR

COMMON
1 D(IO,

2 DELXI
3 AZ(IO
4 CT(IO

5 IRSTA

RSTAR =

IGO=O

I=II

J=JJ

K=KK
NBD=I

389 GO TOI375,378),IRSTAR

378 CALL RESID

375 RSTAR:RSTAR+RESII,J,K}

NRD=C

403 IGO=IGO+1
GO TO (391,392,393,394,395,396,402)'IG0

391 I=II-1
IF(I-1)400,_89,389

392 I=11+1

IF( [-IMAX)389,389,400

393 I=II

RESIDUAL

UIIO,IO,22},V(IO,IO,22),W(IO,IO,22)'P(IO*IO'22}'

IO,22),R(IO,IO,22),TIIO,]O,22),ZIIO,lO,22),FR'FT'FZ'DMAX(4)'

4),NSEQ(4), RES(lO,IO,22},AR(IO,lO,22),AT(]O,IO'22)'

,IO,22),BR(IO,IO,22),BTIIO,IO,22),BZ(IO,IO,22),CR(In,ln,22),

,IO,22),CZ(IO,IO,22),XH,RSTAR,TT,PSAT,DLIQ,REV,A,M,NVAR,NT_,

R,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K_!AX,VISC,NBD,KLF,KTE

0,9

J=JJ-1
IF(J-I)400,389,389

194 J=JJ+l

IF(J-JMAX)380,389,400

395 J=JJ
K=KK-1
IF(K-1)400,389,389

396 K=KK+I
IF(K-KMAX)389,389,400

402 RETURN

END
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SUBROUTI
CALCULATION OF

COMMONU{
1 D(IO,IO,
2 DELX(4) ,
3 AZ(IO,IO
4 CT(IO,IC

5 IRST,AR,D

PSP=PSAT-

IF(PSP)IO

101 C(I,J,K)

GO TO 103

102 D(!,J,K)

103 RETURN

END

NE STATE

POINT DENSITY

]0,10,22},V(lO,IO,22},W(IO,IO,22),P(]O,lO,22),

22),R(IO,IO,22),TI10,IO,22),Z(IO,IO,22),FR,FT,FZ,DMAX(4),

NSEQ(4), RES(10,lO,22),AR(lO,IO,22),AT(]O,]0,22),

,22),BR(IO,10,22),BT(IO,IO,22},BZ(10,10,22),CR(IO,IO,22},

,22),CZ(IO,IO,22),XH,RSTAR,TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,

X,I,J,K,II,JJ,KK,IMAX,JMAX,KMAX,VISC,NBD,KLE,KTE

P(I,J,K)

1,101,102

= DLIQ

: DLIQI( I,+TT_-PSP }
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C DATA REDUCTION PROGRAM FOR RESULTS OF EXACT

C THREE-DIMENSIONAL INDUCER ANALYSIS PROGRAM

C - "

C TRW ACCESSORIES DIVISION, CLEVELAND

C

6AUG65

DIMENSION TITLE(16)
COMMON U(IO,IO,22),VIIO'10'22) 'w(10'10'22)'m110'lO'22)'O(In'lq'22)

1 ,RIIO,IO,22),TIIO,IO,22),ZIIO,IO,22),AI10,IO,22)'QI]O'IO'22)'

2 UBI10,22),VB(lO,22},WBIlO,22),PB(10,22)'DBIlO'22)'RB(]O'22)'

3 DELP(IO,22),X(]O,10),Y(10,10),REV,DLIQ,PSAT,TT,IGO'I,J'K'IMAX'

4 JMAX,KMAX,IM1,JMI,B,SUB,TOT,OTOT

READ IOO],IMAX,JMAX,KMAX,KLE,KTE

READ IO03,(((R(I'J'K)'I:I 'IMAX)'J:I'JMAX)'K=I'KMAX)

READ IO03,(((TII,J,K),I:I,IMAX),J:I,JMA_),K:I,KMAX)

READ IO03,(((Z(I,J,K),I=I,IMAX),J:I,JMAX),K=],KMAX)

999 READ IOOC',TITLE

PRINT IO00,TITLE

READ IO0],KOUNT
PRINT 1CI2,KOLINT

RFAD IO02,_LANK
READ IOC2,RFV,DLIO,PSAT,TT

READ IO02,(((I.;(I,J,K),I=],fMAX),J:I,JMAX),K=1,KMAX_

READ IO02,(((V[I,J, KI,I=I'IMAXI'-J=I'JMA×)'K=]'KMAX}

READ IO02,(((W(I,J'K)'I=I'I MAX)''J=I'JMA×i'K=!'KtzAX)
RFAD IO02_(((P(I'J'K)'I=I'IMAX) 'J:I'JMAXI'<=!'KMA_)

CONVERT FROM ABSOLUTE TO RELATIVE VELOCITIFS AN_

CALCULATF POINT DENSITIFS
DO ] K=I,KMAX

DO I J=I,JMAX

DO 1 I:I,IMAX
V(I,J,KI:R(I,J,K)*REV+V(I,J,K)

IFCTT}2,3,2

2 PSP=PSAT-P(I'J'K)
IF(PSP)3,3,21

21 D(I,J,K)=DLIQ/(I" +TT*pSP)

GO TO 1

3 D(I,J,K)=DLIO

I CONTINUE

CALCULATE INCREMENTAL THROUGHFLOW AREAS AND MASS FLOW RATES

I_I=IMAX-I

J_]=JMAX-I

DO 4 K:I,KMAX

DO 4 I=I,IMI

RBII,K)=(R(I,I,K)+RII4],],K))/2-

DO 4 J=I,JMI
AII,J,K)=RB(I,K)*(R(I+I,I,K)-R(I,I,K))*(T(I*I'J+I'K)+T(I'J+]'K)

1 -T(I+I,J,K)-T(I,J,K})/2,

4 Q(I,J,K)=A(I,J,K)*(W(I,J,K}+W(I,J*I,KI+W(I+],J,K)+W(I+],J+],K)_W

1 (1)(!'J'K) +_)(I'J+I'K)+D(I+I'J'K_+_(!+I'J+]'<)_/IA"

CALCULATE AREA-AVERAGED O'J&NTITIES

DO 6 IGO:I,5

DO 6 K=],KMAX

DO 5 J:I,JMAX

DO 5 I=I,IMAX

GO TO (51,52,5_,54,55),IG0

5] XiI,J)=tJ(I,J,K)

GO TO 5

52 X(I,J):V(I,J,K)

GO TO 5

53 XII,J)=W(I'J' K)
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54

55
5

61

62

63

64

65
6

GO TO 5
X(I,J)=P(I,J,K)
GO TO 5
X( I ,J) =D( I ,J,K)

Y(I,J)=A(I,J,K)

DO 6 I=I,IMI

CALL SUM

GO TO (61,62_6_.,64,65),IG0

UB ( I ,K )=SUB/TOT

GO TO 6

VB( I ,K )=SUB/TOT

GO TO 6

WB ( I ,K )=SIJR/TOT

GO TO 6

PB( I,K)=._UB/TOT

GO TO 6

DB( I,K)=SUB/TOT

CONT INUE

CALCULATE MASS FLOW RATE PER CHANNEL

QTOT=O, 0

DO 7 I:1,I_41

DO 7 J=I,JM1

7 QTOT=QTOT+Q(I,J,])

CALCULATE MASS-AVFRAGED QIJANTIT!ES

K=KLE
80 DO 8 IGO=1,3

CALL MAV
GO TO (81,82,83),IG0

81 PF)=B
GO TO 8

82 V2=B

GO TO 8

83 tJV:B

8 CONTINLJF

IF(K-I )l0,9, ] ,3

9 PDIN=PD

V21N=V2/2.

UV I N=UV
K=KTE

GO TO 80
IO PDEX=PD

V2FX=V2/2,

UVEX=UV
DH=PDEX+V2E X-PD I N-V2 I N
PSH= (UVEX-UV I N )*QTOT

EFF=DH*QTOT/PSH

CALCULATE BLADE-TO-BLADE PRESSURE LOADING

DO 12 K=] ,KMAX

DO 12 I=I,IMAX
12 DELP(I 9K)=P(I,] I,K)-P(I,JNAX,K)

C *** OU'PUT ROUT I IXlE **_

PRINT 1004

DO II K=I,KMAX

IF(K-KLE} 11].]12,113

112 PRINT 1005

GO TO III

I13 IF(K-KTE)II],]]4,1]I

114 PRINT 1006

III PRINT I007, Z(l _I,K),RB(],K),UB(I.K),VB(I,K),WB(],K).PB(I.K},

] DR(I,K)
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C

ii PRINT I00
I
PRINT 101
DO i_i K=
IF(K-KLE)

132 PRINT I00
GO TO I_I

133 IF(K-KTEI
134 PRINT
131 PRINT

PRINT
GO TO

1000 FORMA
100] FORMA
1002 FORMA
1003 FORMA
1004 FORMA

ISIII
l 9X

2 8X

1005 FORMA

]006 FORMA

IO07 FORMA

1008

1009

I010

1011

I012

8,(RB(I,K),UB(I,K),VB(I,K),WB(I,K},PB(I,K),DB(I,K),

I=2,1M]}

0

1 ,KMAX

131 ,I_2,1_3

5

131,1_4,!3l

1006

IOll,Z(1,1,K),(DELP(I,K),I=I,IMAX}
1009, PDIN,PDEX_V2INgV2EX,DH,PSH,EFF,QTOT

999

INPUT-OUTPUT FORMATS ***

T(16AS)

T(2613)

T(BFIO.7)

T(IP6EI3.7)

T(I/IOX52HHUB-TO-TIP DISTRIBUTOINS OF AREA-AVERAGED OUANTITIF

IOXSHAXIAL,2(gx6HRADIAL),SX]OHTt_NGENTIAL,IOXSHAXI_I-,

6HSTATIC/2(8x7HSTATION),3(TXSHVELOCITY),7X8HPRFS£URE,

7HDENSITY//)

T(IXI8HBLADE LEADING EDGE)

T(IXIgHBLADE TRAILING EDGE}

T(/7F15.5)

FORMAT (15X6FI5 • =,)

FORMAT (III20X2aHMASS-AVERAGFD QUANT IT IES//2 (IOX5HINLET, 11X4_E× IT ) ,

I IOXSHTOTAL ,8XTHCHANNEL, 8 X 7HOvERALL 'SXTHCHAKNEI-/2 (7× 8HPRF c''£_jRE) '

2 2(TX8HVELOCITY),IIX4HHEAD,IOX5}ISHAFT,5XIOHEFFICIENCY'
S IOX5HPOWER,26X4HRATE//SFI5.53 6X9HMASS-FLOw/4( IIX4HHEAD} ,IIX4HRI. E_

FORMAT(//2X9HZ-STATION,OX58HH_J-3-TO-TIP DISTRIBL,'T[ON 0 _ BLA!)F-TO-.nl

lADE PRESSURF LOADING//}
FORMAT( FIl.4,9XIPlOE]0.4)

FORMAT(/23HRFDt._CED OUTPUT OF CYCLE,I'_)

END
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SIlBROU

CALCULATE WE

COMNON
1 _R(IO

2 UB(IO

3 DELP (

4 JMAX

SLJB=O °

TOT=O.

DO 1 J

SUB=SU

I TOT=TO

RFTURN

FND

TINE SU_

IGHTFD SUM

U(IO,10,22),V(10,IC,22),W(10,10,22),P(IO,IO,22)_D(IO,IO,22)

_IO,22),T(IC,,10,22),Z(IC,10_22)_A(Ie,10,22),O(IO*10,22),

,22},VB(IO,22)_WB(IO,22),PB(1O,22),_BI10,22),RB(]O_22)*

IO,22)_X(]O_10),Y(10,IO)_REV_DLIQtPSAT,TT,IGO,I,J_KtIMAX*

KMAX, IM ] ,JM ] ,B, SIJB,TOT _QTOT

O

0

=1,JM]
B+Y(I,J)W(X(I,J)+X(I,J+I)+X(I+],J)+X(I+I,J+] ))/4,

T+Y(I,J)
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SUBROUTINEMAV
CALCULATEMASS-AVERAGES

2

3

I0

20

COMMON LI( I0,10,22 ) _V(10,I0,22 ),W( iO,I0,22 ) ,P (IO,10,22) 'D( 10' IO'22)

1 ,R (I0,10,22) ,T (10,I0,22 },Z(I0,IC),22) ,A (Ir_,19,22 ),Q( IC),1q,22 } _

2 UB(10,22),VB(lO,22),WB(lO,22),PB(]01,22),DB(]h*22)'RP'(]O'22) '

3 DELP(10,22 } 'X (] 0' 10) 'Y(10'10) 'REV*DL IQ' pSAT ' TT' IGO' I ' J'K' IF'_Ax '

4 ,KMAX, IMI ,JMI ,R ,SLJB,TOT ,QTOTJMAX

DO I0 J=I,J_IAX

DO 10 I=I ,

GO TO (I,2

X( I,JI=P( I

GO TO IO

X ( I ,J} =U( I

GO TO IO

X( I ,J) =R( I

Y( I ,J)=Q( I

B=O,O

DO 20 I=l ,

CALL SUM

R=B+SUB
B=B/QTOT

RETURN
END

INAX

,3),IGO

,J,K)/D(I,J,K)

,J,K }*w2+V( I ,J,K }*w2+W( I ,J,K)**2

,J,K)_REV_V(t,J,K)

,J,K)

IM1

186



APPENDIX D

INSTRUCTIONS FOR USE OF APPROXIMATE

SOLUTION COMPUTER PROGRAM

This appendix describes the aPproximate analysis program including its two subroutines.

The latter one of these finds blade coordinates for any full blades having radial ele-

ments, constant thickness with or without radial taper and leading edge faring, and a

quadratically-varying lead. Any other shape would require a new blade coordinate

subroutine. The inputs and outputs are described, and block diagrams are included

with a complete Fortran IV listing.

1. Computer Running Information

The main program and its two subroutines have a common storage require-

ment of 13,513 locations. The maximum field capability is 11 streamlines

including hub and shroud, and 21 stations including blade leading and trailing

edges; i.e. an 11 x21field. The minimum isa2 x2 field.

Computer running time depends on the size of the field and the accuracy

required. The following estimates roughly summarize our experience on

computer times:

a) Time a No. stations

b) Time a (No. streamlines) 4

c) Time a .3/ 1 '_

V llowable unbalance

d) Time at stations where two-phase flow exists is double that for incom-

pressible flow.

For example, an 8 x 16 field with incompressible flow and an allowable

unbalance of. 001 took about 400 seconds on a UNIVAC 1107, while a . 01

unbalance took 185 seconds. A similar 4 x 6 field at . 001 balance took

24 seconds.

2. Input Data

The inputs to the program consist of (a) the title and program control

numbers; (b) the geometrical data for locating quasi-normal stations and

the streamlines at the blade leading edge; (c) the blade contour data;

(d) the speed, fluid properties and accuracy required; (e) the distributions

of fluid pressure, velocity and density at inlet; and (f) the various sets of
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fluid data v, Psat and T* for which solutions with the foregoing inputs are
desired. Note that for splitter blades a separate problem should be solved

up to the splitter point, and the output should be used with a change in the
number of blades nb to solve a new problem downstream of that point.

Following is a definition of each program input in the order required by the computer;

(the format is given in the Fortran listing):

TITLE: Any identifying information consuming up to 80 spaces.

NQI, NQJ:

MNC:

The number of streamlines (i or 1) and one more than the number

of stations (j or J) respectively. The extra station J = NQJ is

required for blade angle data at station J = NQJ-1. I = 1 on the

hub, and I = NQI on the shroud; J = 1 on the blade leading edge

and J = NQJ-1 on the blade trailing edge. The "field" stated

in table III. I quotes NQI x (NQJ-1), = qi x qj

The maximum allowable number of hub-to-shroud iteration cycles

at any one station. This Iimits the running time if the maximum

allowable streamline unbalance error EN (see below) is too small.

In such a case the computing continues and the resulting maxi-

mum unbalance is printed out. We used MNC = 25 in our 4 x 16

runs, (see results in table III. 1), and 1000 for 8 x 16. The actual
number of cycles NC is dependent on EN and was usually 1/4

to 1/2 of MNC except in two-phase cases.

NDATA: The output data control number, specified as 0, 1, or 2. The
use of NDATA is described in the output description further on.

This number makes it possible to omit all field data between the

inlet and outlet, thus saving considerable computing time when

several runs with small fields (say 4 x 16) are required simply

to establish overall performance at various combinations of

Rm, NPSH, and T*. With a 4 x 16 field, up to half the running
time is consumed in the format and printing activity of the

computer.

NDB: A control number that is normally equal to zero. If NDB = 1,

a cycle-by-cycle account of the reduction of the total unbalance

tPf 2;.Ui, j) isprintedouttogetherwiththeattendantst ream-
go 1 line adjustment magnitudes Sn' for stations

2 < J < NQJ-1. Following are the geometrical inputs:

z(I, i): The inlet axial positions _i of strealines at J -- 1 from hub to tip.

1 <--I---< NQI.

R(I, 1): The radial positions riatJ = 1. 1 < I< NQI.
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Z(1, J):

R(1, J):

Z (NQI, J)
and

R(NQI, J):

The axial positions of the stations j along the hub; i. e., the

locations of the hub-ends of the quasi-normals.

I= 1 and 2 < J < NQJ.

The radial positions of the stations along the hub. I = 1 and

2 5_ J <_-NQJ.

The axial and radial positions respectively along the shroud.

I=NQIand2 < J 5_ NQJ.

At this point, the following data is required by the blade subroutine:

AA, BB,

CC:

DSEX:

The lead constants a, b, and c respectively, which described

the radial-element pressure side of the blade according to the
formula

d@
- a + b_ + e_2

d_

The exit boundary layer displacement thickness _ ex , which

is assumed to exist on each side of the blade. The program

distributes _* linearly by station from zero at inlet, adding it

to the blade thickness.

T1T: The blade thickness t at the radial location R1T-- usually at

the inlet tip.

DTR: The radial blade taper constant where the blade thickness through-

out the machine (except in the fared region) is a function of radius

only and is given by

dt I (RIT) _r ]t = (TIT) + d--_-

We used no taper in our tuns.

ANB: The number of blades nb

TF(I, 2,3): The blade suction-side fairingconstants at stations 1, 2, and 3. The

blade thickness t at these stations is given by the product of TF and

the t of equation (A. 2). 0 <_ TF <- 1, and all material is removed

from the suction side only. We used TF(1) = 0 and TF(2 and 3) = 1.

Continuing now with the remaining inputs to the main program, we
have the fluid data:

(D. 1)

(D. 2)
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EN:

RHOF:

OMEGA:

GO:

RHO (I, 1):

P(I, 1):

VM1 (I):

DELTAE(D:

VTB(I, 1):

V"

PSAT:

T:

Pf
The maximum allowable streamline unbalance -- Umax.

go
As noted earlier, this value is exceeded if a balance cannot be

achieved in MNC cycles at any station J.

The liquid density Pf

The rotative speed f_, radians per unit time.

Constant in Newton's second law, go

The fluid density P i' in the middle of each annulus i or I at the
blade leading edge where J = 1. 1 <-- I <-- NQI-1, since the number

of annuli is one less than the number of streamlines.

The fluid static pressure Pi' in each annulus. J -- 1 and

1 < I < NQI-1.

The velocity component in each annulus normal to the blade

leading edge at that point in the meridional plane.

1 <_ I < NQI-1.

The exit deviation angle $ex, i' of the relative flow from the
direction of the blade in each annulus. This deviation is distri-

buted from zero at inlet according to the sixth power of the

number of stations (_.m6), thus approximating an unloading

condition near the outlet. We used _ex = 0 for all our runs.

The tangential absolute velocity component V0, i' at the inlet
of each annulus. J: land 1 <_ I <__ NQI-1.

The fluid kinematic viscosity

The liquid saturation of vapor pressure Psat

The fluid thermodynamic constant T*

As many combinations of these three final inputs V, PSAT and

T may be added to the other data as the number of solutions

desired for unchanged values of all other inputs. For example,

NPSH depends on the difference between P(I, 1) and PSAT,

whereby a reduction of PSAT with constant values of say zero

for P(I, 1) increases the NPSH.
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3. Output Data

All output data is printed in groups. Each is here defined together with the value of

the input control number NDATA for which that group can be obtained -- in the order

of their appearance and under the following headings:

a) Input data except for V, PSAT, T.

NDATA = 0, 1, or 2. No headings.

The following data groups are printed at station J = 1:

b) Streamline and blade data at station J.

e)

NDATA = 2:

I:

J:

R:

Z:

N:

TS:

TP:

Average fluid data at station J.

NDATA= 0, 1, or 2. Columns for annuliI-- 1,2,3,

I." The annulus identifying number i.

J: The station identifying number j.

RAV: The annulus mean radial position ri' .

ZAV: The annulus mean axial position _i'.

Printed in columns headed as follows for streamlines

I= 1, 2, 3 ..., NQI:

The streamline identifying number i.

The station identifying number j.

The streamline radial position r i.

The streamline axial position _i.

The streamline position n' i corresponding to r and _;

viz., the approximate meridional arc distance along

the blade leading edge from the hub.

The circumferential position Os, i of the suction surface

of the channel at location n' -- outside the boundary layer

displacement thickness.

The same for the pressure surface

..., NQI-I:
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P: The static pressure Pi'.

W: The relative velocity Wi'.

VM: The componentof velocity Vm, i _in the meridional
streamline direction, except at the leading edge (J = 1)

where this quantity is the input value VM1 normal to

the blade leading edge.

.!

VR: The radial velocity component Vr, 1 •

VZ: The axial velocity component V_, i.

D: The density P i'.

d) The first or next set of the final inputs V, PSAT, T ( v, Psat, T*) now

appears for NDATA = 0, 1, or 2 under the following heading:

KIN VISCOSITY, VAPOR PRESS,

VAPORZN CONST. -- THESE INPUTS USED

FOR THE FOLLOWING DATA.

The following output sequence is repeated for 2 < J <__NQJ-1; i. e., through

the blade trailing edge station.

e) Only if NDB = 1, the special cycle iteration data discussed under input

appears for NDATA = 0, 1 or 2.

f) Same as output (b) with the following additions: (NDATA = 2)

Pf
U i .

U: The resulting streamline unbalance go

NC: The total number of cycles executed at this station.

g) Blade-to-blade fluid data between stations J and J -1. (i. e., at station j')

NDATA = 1 or 2. Columns for annuli I = 1, 2, 3, .... NQI-1 with two

rows of data for each annulus. The first row gives I, J, RAV, and ZAV

as in input (c), and the following:

dW
DWDT" The constant slope _ of the blade-to-blade relative

velocity distribution.

P: The mid-passage static pressure p i'"

.,
PP: The channel pressure-side static pressure pp, 1 •
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w

W: The mid-passage (mean} relative velocity Wi'.

WP: The pressure-side relative velocity Wp, i'.

D: The average density _i v.

,IDP: The pressure-side density Pp, 1

The second row repeats NC and U from output (f).

Also it gives the corresponding channel suction-

side data PS, WS, and DS.

h) Same as output (c). NDATA = 2, except at trailing edge (J = NQJ-1)

where this information is printed for NDATA = 0, 1, or 2.

The following additional data is printed for NDATA = 0, 1, or 2

after reaching the trailing edge:

i} Blade element data at exit.

Columns for annuli I = 1, 2, 3, ..., NQI-1.

•, calculated by equation (III. 22).LOSS COEFF: w 1

EFFICIENCY. _ i' calculated by equation (III. 23).

DEVIAT, ANGLE: 8ex, i' given by input DELTAE (I).

j) Overall performance data.

Listed in the following order, each having an appropriate heading:

n

AH

#2

V12/2g o

V2 2/2g o

w T

T*

calculated by equation (HI. 25)

calculated by equation (HI. 26)

calculated by equation (III. 26)

calculated by equation (HI. 27)

calculated by equation (HI. 27)

calculated by equation (HI. 24)

calculated by equation (HI. 28)
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Ps
calculated by equation (HI. 29)

calculated by equation (HI. 30)

, Psat and T* given by input, as is the value of after the next two items.

UNBAL ALLOW: _-o Um desired. This is the value of EN used at

input. The program stores it unchanged under the name

CRN.

MAX UNBAL ERR: Uma x obtained. This is the resulting value of

EN, which is the same as CRN if NC < MNC throughout

the calculations.

For each additional set of v, Psat and T*, a further set of outputs is printed,

beginning with (e) and continuing through (j). For any set that gives no

complete solution due to choking at low NPSH, the message "NPSH too low

for two-phase solution if NC less than MNC" is printed at the point where

this occurs, and the computer passes on to the next set. It is safe to say

that for typical MNC, even NC = MNC means no solution is possible at larger

numbers of streamline balancing iteration cycles NC. The computer will stop

with an input tape end-of-file condition.
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FIGURE D. 1

f

Read: TITLE,

coordinates of streamlines

at leading edge and of hub
and shroud stations

I 795

aleulate

ng edge _BL__ADE

d's. ]

_'s A. land A._//

1
/

Read: Speed, fluid proper-

ties, and inlet distributions

of press's., velocities,

and densities

YES

713

Calculate

data for \surface

Ps, Wp, Ws, pp. Ps)i'

's III. 13, 14, 15_,/

YES YES

34 11

max,
NO U i !

no. cycles
exceeded for all i ?

NO

99

/Read:

_, Psat, and T* .___

1
j=l [

15

j=j+l [-"

l 160

Estimate positions n' of

streamlines along quasi-

normal at j, and find as-

sociated eoord's r i and z i
for all i.

t 935

e_xitCalculate -_

blade element
data (_, _)i' for all'

i' (eq's III22, 23)

and overall per-
formance data

AH, Pl, _2, _, etc.

(eq's III. 25 to30) j

1/

202

176 / 4 4
] 1

18/

[streamline loc'ns, n' / / Calculate
I for each i from hub to I-__..JBLADE coord's 0o _\

shroud successively _ " S, 1[shro_ ly ] 7a_, i and flow 2S_les_

(eq III. 12) / / Bi', j" for all i

"_" _] _ _s A.I,j A. 2 e_/

',aleulate

s U i of al

streamlines i,

(eq IH. 10)

I
A_NNU Calculate

L us average fluid \
_W' Vm' Vr' V0' I

V_, 0 )i' for all i', ]

/_'snI. 8, III. 9) /

a) BLOCK DIAGRAM FOR MAIN PROGRAM

(Numbers above boxes refer to key Fortran statements in the main program)
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FIGURE D. 1 (Continued)

ubroutine ANNUL

5O

Assume
New Two-
Phase

Oi',j

Assume liquid

._-----__ flow, i.e.
_*'1 ,j Pf

/_aleulate Annulus_

/ Outiet Velocity Diagram'_

I c_' Vm, vo) i', j ]

_s. III. 8, etal)/

C,alculate Annulus_

tlet Pressure,

j (eq III. 9) /

16 et al

to_C_lleulate Blade-_

ade W and

I Distributions

sHI. 14 et al)

_YES

_k,_OL=U J- /Z_alculate _'_

W i.

NO 41 38

_i C°ntinuity _k //_aleulate Blade_

?/'Pi, j+ Pi, j-l_\ [ to-Blade Average

', J= \ 2 --] _*_--_ De? si,ty

Test / _] (eqlII 19)J

b)

YES

4O

BLOCK DIAGRAM FOR SUBROUTINE "ANNUL"

/ Two- Phase_

I"°

(Numbers above boxes refer to key Fortran statements in the subroutine)
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FIGURED. 1 (Concluded)

J
fRead: Blade lead con-

stants a, b, c; Blade and
boundary layer thickness
data andnumber of blades

Subroutine
BLADE

(1st time only) 24

_slCUlate ]_

age hydraulic

eters Dh, j for

1
_ 6, 5, 8,10 or 11

_Calculate )

1

gle 0p of pressure

e of channel

. A. 1)

/blade thickness t \

I (eq. A. 2) including}

\boundary layer thickness/

c)

f Calculate e_
gle 0 s of suction sid

channel

BLOCK DIAGRAM FOR SUBROUTINE "BLADE"

(Nqmbers above boxes refer to key Fortran statement numbers in the subroutine)
197



C

C

C

C

TABLE D. I

FORTRAN IV LISTING OF APPROXIMATE ANALYSIS PROGRAM

APPROXIMATE 3-DIML INDUCER ANALYSIS FOR NASA AUGUST
20, 1965

TRW ACCESSORIES DIVISION, CLEVELAND, OHIO

DIMENSION Z(ll,22),R(]I,22),AN(ll,22),TP(]1,22),TS(1],22),RHO(IO'

121),RB(IO,22},ZB(IO,22},TPA(IO)tTSA(10),TA(IO),SRFA(lO),SBF(IO)'

2CBF(10),DT2(IC),FLC(10},RVT(10),DEM(]O),P(1O,21),VTR(]O,21),WB(]9'

321),DELDB(11,22),AK(10,21),LJ(ll,2]),ACOSGJ(22),SJ(22),W(1h}'DELTAE

4(IO),B(10),VMI(IY)tVM2(IO),VII]O),AM](IO),VR](]C),VZ](IO),VR(]O)'

5VZ(10},ALOSS(10),DHP(22),ANN(]O),CONV(Ie}

COMMON AN,RR,ZZ,R,Z,Fpp,TSS,PBI,PB2,WBI,_f32,RHOBI,RHOB2,RHOF'PSAT'

IGO,ANB,PIE,AK2,T,DHP,J,NOI,NQJ,V,FC,FR,FSA,S_F2'CBF2'T_P'T_S'TDq'

2RB2 ,RVT 1 , ISTART ,AW,VBT2,0MFGA ,AC2 ,VBM2 ,CNV

1000 FORMAT (8CH

1 )

1001 FORMAT(]615)

1002 FORMAT(BFIC.4}

10C3 FORMAT(//2X,,_SHSTREAMLINE AND BLADE DATA AT STATION

I 4X, IHJ,7X, IHR, lqX, IFZ ,IkX, IHN, 14X,2HTS, 13X, 2HTP/

IU04 FORMAT(//2X,38HSTREAMLINE AND BI_A{)E DATA AT STATION

1 4X, IHJ,7X, IHR, 14X, IHZ, 14X, ]HN, ]4X'2HTS' 13X' 2HTP'

22HNCI (2 I5, lPSEI 5.7,,.i I8 ) }

1005 FORMAT(//2X,_IHAVF_RAGE FLIJID DATA AT '_TATION J/4W,I

I 6X,314RAV,qX,3HZAV, 9X, IHP, 1 ] X , ]H,.V,l 1X ,,2

2 2HVR, ]0X,PHVT, IOX,2HVZ, 10X, ].HD/ (215, IP�F ]2"4) )

1008 FORMAT(//2X,'_2HBLADE-TO-BLADE FLUID DATA i._ETWEEN £T

11 14X, I H I ,4 X , 1HJ, 6 X ,3HR AV, 9 X, 3147AV, 8 X ,Z_HDV,r)T, 9X , IHP,

21HW,IIX,2HWP'IC'X'IHD' IIX,2HDP/28X,2HNC'I[X'!Ii!#'22X'

322X ,2HDS }

1009

I010

1011

1012

1013

FORMAT (215 ,]P�FI 2 .a)

FORMAT (26X ,1 I5,3X , IPlEI2.4,12X , IPIFI2.4 ,]2X, !PlFI2.4,12X, ]P] F! 2.4 }

FORMAT(Y/2X,26H"SLADE ELEMENT DATA AT EXIT/aX,IH!,SX,If'HLOSS COEFF.,

]SX,]OHE.FICIF_NCY,'_X,]2HDEV!AT ANGLE/(] I5,1P3FlS.7) 1

FORMAT(///2X,,,24HOVFRALL PERFORMANCE DATA//3X,.12HTOT HEAl) CHG,_X,

111HPRESSURE IN,3X,12HPRESSURE CtJT,3X,,12HVEI_Y HE._D IN,?X,I"_HVELY HF

2AD OUT,1X,14HMASS FLOW RATF.,,,:)X,6HTORQIJE,4X,IIHSHA_--T POWFR/

31P8E15.7}
FORMAT(//3X,12PIOVERALL EFFY,3X,12HANGI!LAR VFI_Y,4X,11t--ILIQ DFºNSITY,

14X,11HVAPOR PRESS,2X,13HVAPORZN CONST,4:,C,111.4[!NBAL ALLOW,2X,131.twh&×

2UNBAL ERR,3X,12HNO OF BLADES/IPSE15.7)

CONST,6X,4tH-fl4ESE INPUTS LISFD

FORMAT(//4X,liHJ,3X,SHCYCLE,4X,12HSTLN ADJ

FORMAT(II5,]IT,_X,IP2F]S.7)

FORMAT(//2X,71HNPSH TOO LOW cOR TWO-PHASE

I IF NC LESS THAN _NC}

PlE=_,]415')27

ISTART=I

READ ICO0

PRINT 1000
READ IO0],NQI,NOJ,MNC,NDATA,KDB

PRINT ]O0],NQI,NOJ,MNC,NDATA,NDB

READ 1002'(7(I'])'I=]'NQI)

PRIN_ IOI5,(Z(I,]),I=I,NQI)

READ IOO2'(R(I'I)'I=I'N31}

PRINT 1015,(R(I,I},I:I,NQI)

REA_ 1002'(Z(I'I)'!=2'NQJ)

PRINT I015,(Z(I,I},I=2,NQJ)

READ IOO2,(R(I,I),I=2,NQJ}
198

FORMAT(IP8FIS.7)

FORMAT(IIIII2X,13HKIN VI SCOS I TY,4X , 11HVAFOR PRESS,2X,
FOR THF FOLLOW!f',IG ,")^T/_)

'1"MAG,4X,!]HTOT/_L .. ,IBAI..)

SCL['TION WITH THIS FLUID.

J/4X,]HI,

(215,1PSE]5.

J/4×,IHI,

13X,IHU,ICX,

7))

HI,4×,IH,J,

HVM,]qX,

AT IONS J AND J-

] I'_,21-PP, 19×..

2HPS, 22X, 2HW < ,

I015

1016

] ]3HVAPORZN

102U

1021

1022



7o5

1

PRINT
READ

PRINT

READ

PRINT

I015.[R(],I),I:2,NQJ)
IOO2,iZINQI,I),I=2.N_J)

IOIS.(ZINQI,II,I=2.NQJI

IO02,(RINQI,I},I:2,NQJI

IOI5.(R(NQI,I).I=2,NQJI

SET UP FIELD OF HUB, SHROUD AND LFADING EDGE COORDINATES

AN(I,I):O,O

I=1

DO 795 J=I.NQJ

RR:R(I.J]

ZZ=Z(1.J)

CALL BLADE

TPII,J)=TPP

TS(I,JI=TSS

J=l

I=I+l

AN(I,1 )=AN(I-I,] )+SQRT(((7(I,!)-Z(I-!,] )}"w'*2o)+((P(I,])-R(I-I,I) )*

1"2.})

RR=R( I ,] )

ZZ=Z( I , ] l

CALL BLADE

TP(I 91)=TPP

TS ( I , I )=TSS

IF(NQI-I}7,7.1

7 J=J+l

AN(NQI,.J)=SORT(((R(NQI ,JI-R(],J) )*_2.)*((Z(NOl ,J)-Z(1,.J) }*'2.) )

ACOSGJ(J)=(R(NQI,J)-P.(I,J) )/AN[NQI.-J}

SJ[J)=(Z(NQI.J)-Z(I...J) )/AN{NQI,J)

5 IF (J-NO J)7,6,6

6 NO) I=NOI-]

ANQQ=NQ I I

REAl) 1002,EN,RHOF,Ot4EGA,GO

PRINT 1 ()I_ ,EN, RHC)F ,OMEGA ,GO

READ ].002' (RHO( ! , 1 } , I :] ,NO) I )

PRINT i015. (_l_O( I ,I) , I:l .NQI I )

READ ] (I(')2_• (P( I ,I ) .I=l ,NOT I )

PRINT IO15,(P(I,I) ,I=] ,NOI I)

READ IC)02. (V_'] ( I ) , I=l ,NQI I )

PRINT I0] 5, (VN11 ( I ) 9I=l ,NOI I )

READ IOfl2,(DELTAF(1),I=I,.NOI I)

PRINT I015 _ (OELTAE(I) , I=l ,NOI I )

REAr) ]r)o2,(VTB(_,I } ,:=].I'!C)!I )

PRINT 1015, (VTB( I ,I). I=] .NOr I )

DO 2 I=I,NQII

RB(I,I)=(R(I,I }+R(I+],1))/2.

B(I )=AN(I+I,I)-AN(I,I )

DELDB( I,I )=C),
ZB(I,])=(Z(I,I )+Z[ I+I,1) }/2.

VRI(1)=VMI(1)*(Z(I,I,-Z(I+],!.))/B(1)

VZI(1)=VMI(Z)W(R( I+I,!)-R(I,!))/R(; ]

W( I )=VMI ( I )'2 .*P IF*RB( I ,1 )*B (_ __-RHO [ ! ;] 1

VI(II=VTP.(I,I}*VTF_(I,I)+VM] (1)*VN'I (1)

AM] (1)=RB( 1,1 )*VTR(I,] )

2 WB(I,I)=SQRT( I (OMEGA*RB(I,I }-VTP.(I,] ))**2.)+V v] ( I )*V_I (1))

J=1

I F(NDATA-I )45,45,44

44 PRINT IO03,(I,J.R(I,J),Z(I,J),AN[I,J).TS(I,J),TP(I,J).I=].NQI)

45 PRINT ]O05,(I,J.RIB(I,J),ZB(I,J),P(I.I),WB(I,I),V_!(1),
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C
C

C

99

4"3

VRI(1).VTB(I.I),VZI(I}.RHO(I,]).I=],NQII)

NQJE=NQJ-1

AQJ=NQJE-1

CRN=RHOFWOMEGA*OMEGAWR(NQI,I}*EN/GO

IO02.V.PSAT.T

I016

IOI5.V,PSAT,T

ISS=2

READ

PRINT

PRINT

J=l

DO 43 I=I.NQII

CONV(1)=I.

CNV=I.

UMAX=O,O

NCDM=O

DNMAX=R(NQI,I)W.OOS/ANQQ

ADJQ=O,

ESTIMATE STREAMLINE POSITIONS AT EACH STATION FROM

lI7 DO 42 I=I.NOII

IF(CONV(1))41,41,42

41 PRINT I022

GO TO 99

42 CONTINUE
I=O

N=0

15 J=J+l
DO 8 I=I.NOII

AN(I.J)=(AN(I.J-I)/AK(NgI,J-1))*AN(NQI'-J)

AJJ=J-I

8 DELDB(I,J)=_FLTAE(1)W((AJJ/AQJ)**6"}

9 IF(N)13,13,]_

13 N=I
GO TO 15

14 N=O

16 I=1

17 I=I+l

160 R(I,J)=R(],j)4AN(I.J)*ACOSGJ(J}

Z(I,J}=Z(].,J)+AN(I,JIwSJ(J)

12 RR=R(I,J)

ZZ=Z(I,J)

IF(N-2)lS,]B,lG

19 I=I-1

GO TO 105

18 CALL BLADE
TP(19J)=TPP

TS(I_J)=TS£

IF(I-NQI)27_20,20

27 IF{N-1}17,28,17

28 I=I+l

GO TO 12

20 IFIN-1)21,118_22

21 N=2

J=J-1
GO TO 16

22 JJ=J+1

DO 26 I=l,NOII

OO 23 K=J,JJ
RB(I.K)=(R(I.K)+R(I+I,K))/2.

23 ZB(I,K}=(Z(I,K)+Z(I+I,K))/2.
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C

24

25

26

104

100
101

102

DDM=SQRTI(RBII,J)-RBII,J-III**2,+(ZRII,J)-ZBII,J-]))_2°)

DEMIIi=SQRTIIRBII,J+II-RB(I,J-III**2,+IZ_II,J+II-ZRII,J-II)W*2,)

DT2{I)=(TS(I,J)+TS(I+I,J)-TP(I,J)-TPII+I,J))/2,
TBI=(TS(I_J-1)+TP(I,J-II+TS(I+],J-II+TP{I+I,J-])}/4,

TB2=(TS(I,JI+TPlI,J)+T£II+I,JI+TP(I+I,J))/4,

TB3=ITS(I,J+II+TP(I,J_II+TS(I+I,J+II+TPII+I,J+I))/4,

DT2(II=DT2(1)wSIN(ASIN(ABS((ZB(I,J÷I)-ZB(I,J-]})/DEM(1)))+ACOS(

]ARS(ACOSGJ(J)})}

RVT(1)=RB(I,J-I)*VTR(I,J-1}

BB2=ATAN(DEM(1)/((TB]-TB3)WRB(I,J}))

BF2=BB2-DELD_(I,J)

SBF(I)=SIN(BF2)

CBF(1)=COS(RF2)

BBB=ATAN(DDM/((TBI-TB2)_((RB(I,J)+RB(I,J-]))/2.)))

B_F=BBB-(DEL_(I,J)+DELDR(I_J-I))/2,
£RFA(I)=SIN(_RF)/_DM

TPA(I}=(TP(I,J-1)+TP(I+]_J-1)+TP(I,J)+TP(I+],J})/4,
TSA(I)=(TS(I,J-1)+TS(I+IgJ-1)+TS(I,J)+TS(I+l,J))/4,

TA(1)=(TPA(1)+rSA(1)I/2.

IF(V)24,24,25

CALCULATE FRICTION LOSS EFFICIENT

FLC(1)=O,

GO TO 26

FLC(1)=(.OOT16+.610_/((WB(I,J-l)*DHP(J)/V)**.35))/

] (2**DHP(J)WSBFA(1))

CONTINUE

I=O

I=I+1

RR(I,J}=(R(I,J)+R(I+],J))/2.

FR=(OMEGA_CMFC;A/?,}*(Rn(I,J)*RR(I,J)-RB(I,J-])WRR(I,J-I)}

AC2=RB(I,JI*_T2(I}WSORT((R(I+],JI-R(I,J)}*_

I 2.+(Z(I+I,J)-Z(I,J)}**2.)

FC=FLC(1)

FSA=SBFA(1)

SBF2=SBF(1)

CBF2=CBF(1)

TBP=TPA(I)

TRS=TSA(I)

TDB=TA(I)

RVT]=RVT(I}
RB2=RB(I,J)

RHOBI=RHO(I,.J-1 )

PRI=P(I,J-I)

WRI=WR(I,J-I}

AW=W(1)

CALL ANNUL

RHO(I,J)=RHOB2

P(I,J)=PB2

WB(I_JI=WB2

VTB(I,J)=VRT2

VM2(I)=VBM2

AK(I,J)=AK2

CONV(1)=CNV

IF(N-3)IOC,IO],]02

IF(I-NOI+2}]O6,]O_,103

N=4

I=I+l

GO TO 105

N=3

GO TO I07
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C

C
C

C

C

C

C

C

103

178

NC=O
DELLN=DNMAX

N=3

IJ(l,J)=O.O

U(NOI,J)=O.O

IF(NQI-2)]IB,118,202

I=l
NADJ=O

CHECK ACCURACY OF STREAMLINE BALANCE FROM tIUB TO SHROUD

IF SATISFACTORY, PROCEED TO STATION OUTPUT CALCULATIONS

IF UNSATISFACTORY, PERFORt_ STREAMLINE ADJLJSTMENTS

113 I=I+1

IF(U(I,J)-CRN)IlI,]II,B4

l]] IF(I-NOII)II_,29,29

34 IF(MNC-NC)804,804,112

804 DO 50 I=2,NQII

IF(U(I,J}-UMAX}50,50,40

40 UMAX=U(I,J}

EN=EN*UBIAX/CRN

5O CONTINUE

29 N=I

I=2

GO TO 12

PFRFORM STREAMLINE ADJUSTMENT SEQUENCE

] ]2 NC=NC+I

I=]

172 I=I+l

VMHI=VM2( I-1}

VMH2=VM2(I }

CNVHI=CONV(I-])

CNVH2=CONV(1)

AKHI=AK ( I-I ,J }

RHOBHI:RHO(I-I ,J)

PBHI=P (I-] ,J)

WF_HI=WB(I-I,J)

VTBHI=VTB ( I-1 ,J )

LJH] =U( I-I ,J)

UH2=U( I ,J)

UH1=U( I+1 ,J}

AKH2=AK ( I ,J}

RHOBH2=RHO ( I ,J}

PBH2=P ( I ,J}

WBH2:WB(I,J)

VTBH2=VTB(I,J}

ANH=AN ( I ,J}

RHLD=R(I,J)

ZHLD=Z ( l ,J}
USTAR=U(I-] ,J)WU_ 1-] ,J)+lJ{ I,J)*U(I,J)+U(I+I'J}*U{ I+],J)

176 AN(I,J)=ANH+F)FLLN

GO TO ]6O

750 USTARD= U(I-I,J)*U(I-I,J}+U(I,J}_WU(I,J)+Li(I+],J)*II(I+]'J)

IF (DELLN) 613,8C;8,5]0

STOP 808

IF (ADJQ }6] 2,6]2,611

ADJQ=O.

I F (IJSTARD-USTAR) 170,615,615

_.02

808

610

611



612

613

6135

614

169

615

6]6

6]7

30

31

618

619

62O

170

]80

152

32

174

173

33

175

177

35

179

USTARP=USTARD
DELLN=-DELLN

GO TO ]76

USTARM=USTARD

DFLLN=ABS(DELLN)

UND2=(USTARP+USTARM-2.wUSTAR)/(DELLN_DFLLN)

IF(UND2) 615,6]5, 614

USND=IUSTARP-USTARM)/(2,*DELLN)

AN(I,J) = ANH-USND/UND2

ADJQ=I.

GO TO ]60

IF (USTARP-USTAR) 618,616,6)6

IF (USTARM-USTAR) 620,617,617

AN( I ,J )=ANH

IF(NCDM)30,_O,_I

DELLN=DELLNIIO. -_

NCDM=I

GO TO 176

DELLN=DELLN*]O.

GO TO 179

IF(USTARM-USTARP) 620,619,619

AN(I,J)= ANH+DELLN

GO TO 169

AN(I,J)=ANH-DELLK

GO TO 169

NADJ=I

NCDM=O

IFII-NOlII172,]73,]73

IF(NADJ)174,]74,]78

IF(DELLN-DNM_X/lOCC, o}178,]78,35
IF(NDB-])32,?3,]75

PRINT ]O20

NDR=2

TOTAL=O,O

DO 177 KS=2,NCII

TOTAL=TOTAL+U(K8,J)

PRINT 102I,J,NC,DELLN,TOTAL

GO TO 32
DELLN=DELLN/]0,

GO TO ]78

AK(I-I,J)=AKH]

VM2(I-])=VMH]
V_2(I)=VMH2

CONV(I-])=CNVH]

CONV(I)=CNVH2

RHO(I-I,J)=RHOBH]

P(I-],J)=PBH]
WB(I-1,J)=W_H1

VTR(I-],J)=VTBH]

U( I-] 9J)=UH]

U ( I ,J ) =UH2

tJ(I+I,J)=UH3
AK(I,J)=AKH2

RHh(I,J)=RHO£H2

P(I,J)=PBH2

WR(I,J)=WBH2

VTB(I,J)=VTRH2

AN(I,J)=ANH
R(I,J)=RHLD

ZII,JI=ZHLD
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C

C
C
C

C

GO TO 180
202 DO ]81 I=2,NOIT

CHECK STREAMLINE UNBALANCE

181 U(I,J)=ABS(((p(I,J)-P(I-1,J}}/(.5*(AN(I+I,J)-AN(I-1,J))})-(ACOSGJ(

Ij).(RHO(I-I,J)+RHO(I,J)}*(VTB(I-I,J)WVTB(I-I,J)+VTB(I,J)*VTR(I'J))

21(4.*GO*R(I,J))))

GO TO ]78
107 U(I,J):ABS(((p(I,J)-P(I-1,J))/I.5*(AN(I+]tJ)-AN(I-1,J))})-(ACOSGJ(

]j).(RHO(I-I,J}+RHO(I,J)I_(VTB(I-I,J}WVTB(I-].,J)+VTB(I,J}WVTR(I'J)_

2/(4.*GO*R(I,J))))

IF(I-2)150,]50,IB3

150 IF(NQI-3)750,750,182

182 U(_,J)=ABS((P(_,J)-P(2,J))/(.5*(AN(A,J)-AN(2,J)))- A

]COSGJ(j)W(RHO(2,J)+RHOIS,J))W(VT_(2,J).VTB(2,J)+ V

2TB(3,J)*VTB(_,J))/(4.*GO*R(3,J}))

GO TO 750

183 IF(I-NQII)]B5,186,]86

185 U(I+I,J}=ABS(iP(I+I' J)-p(I'J))/('5* (

]AN(I+2,J)-AN(I,J)))-ACOSGJ(J)* (

2RHO(I,J)+RHO(I*.],J))*(VTB(I,J)_VTB(I'J)+ V

186

3TB(I+I,J)*VTB(I+],J))/(4.wGO*R(I+],J)))

U(I-1,JI=ABS(((P(I-1,J)-P(I-2,J))/I-_*(AN(I,JI-AN(I-2,JI}))-_CO_GJ

I(j).(RHO(I_2,J)+RHO(I-I,j))*(VTB(I-2,J)-WVTB(I-2,J)+VTB(I-I,J)W V

2TR(I-I,J))/(4.*GO*R(I-!,J)))

GO TO 75O

END OF STRFAMLINF BALANCING PROCEDURE

CALCULATE STATION OUTPLIT AND FINAL BLADE TO BLADE DATA

118

1!9

120

9C _.

929

7 _4

793

IF(NDATA-I)II9,903,120

IF(J-NQJE)II7,gCI,901

PRINT IO04,(I,J,R(I,J),Z(I,J),AN(I,JI,TS(I,J),TP(I,J),U(I,JI'NC'

II=I,NQI}

I=O

I=I+l

AK2=AK(:,J}

RHOB2=RHO(I,J}

PB2=P(I,J)

WB2=WB(I,J)

RHOBI=RI_O(I,J-I)

PBI=P(I,J-I}

WBI=WB(I,J-I)

TBP=TPA(I}

TBS=TSA(1)

TDB=TA(1)

PDB=.5*(PBI+PB2)

RHOB12=,SW(RHOBI+RHOB2) ¢

WDB=.5*(WB]+WB2)
ZB(I,J)=(Z(I,J)+Z(I+I,J))/2.

RAV=(RB(I,J)+RB(I,J-I))/2.

ZAV={ZB(I,J)+ZB(I,J-I))/2.

IF(T)794,104,793

WS=WDB+AK2*(TBS-TD8)

Wp=WDB-AK2*(TDB-TBP)

RHOTDB=RHOF

00 TO 792

AK3=AK2*WDR-AK2*AK2*TDB
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I F(#K2 } 700,700,775
700 WS=WDB

WP=WDB
PS=PDB _
PP=PDB

IF(AK2)728,725,725

728 RHOS=RHORI2

RHOP=RHOB12

RHOTDB=RHOBI2

GO TO 788

125 IF(PDB-PSAT)726,727,727

726 RHOS=RHOF/{1.+T*(PSAT-PDB))

RHOP=RHOS

RHOTDB=RHOS

GO TO 788

727 RHOS=RHOF

RHOP=RHOF

RHOTDB=RHOF

GO TO 788

775 TBWO=TDB-WDB/AK2

WS=WDB+AK2W(TBS-TDB)

IF(TBP-TBWO)730,731,71]

WP=(;.O

TBPP=TBWO

GO TO 115

TBPP=TBP

WP=WDB-AK2*(TDB-TBPP)

IFIPD3-PSAT)744,765,746

730

731

115

1_+4 RHOTDB=RHOF/(lo+T_(PSAT-PDB))

WSAT2=WDB*WI)B-(GG*RHOF/T)*((I./(RHOTDB*RHOTDB))-(I./(RHOF*RHOF)))

IF(WSAT2-WP*WP)760,760,761
76(; J8=l

A7=TBS

AI_=RHOTDB

765 AB=SQRT(I./((2.*T/(GO*RHOF))W(AK3W(A7-TDB)+AK2,AK2,._,(ATWA7_TDR,T
IDB))+I./(AI_WAI3)))

AS=PSAF+{]./T)*(I.-RHOF/A8)

IF(J8-2)766,767,713
766 J8=2

A7=TBP

RHOS=A8

PS=A5

GO TO 765

767 RHOP=AB

PP=A5

GO TO 788

761 WTBSAT=SQRT(WSAT2)

GO TO 77Q

745 RHOTDB=RIIOF

RHOP=RHOF

J8=3

A7=TBS
A|3=RHOF

GO TO 765

713 RHOS=A8

PP=PDB+(RHOF/(2.*GO)}W(WDB*WDB-WP*WP)

PS=PSAT+(]./T)*(I.-RHOF/RHOS)

GC) TO 788
746 RHOTDB=RHOF

WTI3SAT=SQRT((2.*GO/RHOF)*(PDR-PSAT)+W_B,WDB)
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C
C

C

C

C

IF(WTBSAT-WS)779,792'792

779 TBSAT=TDI_ +(WTBSAT-WDR)/AK2

RHOP=RHOF
RHOS=SQRT(]./((2..T/(GO_RHOF)}.{AK3.(TBS_TBSAT)+AK2.AK2*.5*(TBS* T

IBS-TBSAT*TBSAT))+(I./(RHOF*RHOF)))}

pS=PSAT+II./T)_(].-RI_OF/RHOS)

pp=PSAT+(RHOF/(2.*GO))*(WTBSAT_WTBSA T-WP_WP)

GO TO 788

792 RHOP=RHOF

RHOS:RHOF
pp:PDB+{RHOF/I2.*GOI}*IWDB*WDB -WP_WP)

pS=PDB+(RHOF/12,*GO)I*(WDB*WDB -WS*WS)

788 IF(IS5-2)925,925,926

925 PRINT 1008

ISS=3
926 PRINT IO09,19J,RAV,ZAV,AK2,PDB,PP,WDB,WP'RHOBI2'RHOP

PRINT IOIO,NC,UII,J},PS,WS,RHOS

IF(I-NQII)929,928,928

928 IF{NDATA-I}900,900,901

900 IF(J-NQJE)IIT,QOI,901

901 DO 902 I=ItNQII

I)ELZ=ZBII,J+I)-ZBII,J-I}
VR(I)=VM2IIi*(RBII,J+I)-RBII,J-1})IDEM{I)

902 VZII):VM2(I} _IbELZ/DEM(I)
PRINT IO05,(I,J,RBII,J},ZB(I,JI,PII,J),WBII,J}'VM2II)'VR(I}'VIB{I'

IJi,VZ{I},RHO{I,J},I=I'NOII)

IFIJ-NOJE}gB6,935,g35

9B6 15S:2

GO TO 117

END OF REPETITIVE CALCULATIONS AT EACH

OBTAIN MASS-AVFRAGED OUTLET FLLIID DATA

STATION FROM INLET TO EXIT

AND PERFORMANCE

935 WT=O.O

DO 938 I=I,NOll

938 WT=WT+W(1)

PB2=O.O

DO 939 I=I,NQII

939 PB2:PB2+PII,NQJE}*WII}

PB2=PB2/WT

PBl=O,O

DO 940 I=I,NQII

940 PBI=PBI+P{I,I }*w(1)

PBI=PBI/WT

VHI=O.O

DO 941 I=],NQII

941VHI=VHI+V]{I )*WII)

VHI=VHI/I2.*WT*GO}

VH2=O.O

DO 942 I:I,NQII
942 VH2=VH2+( VTBII'NOJE)*VTB(I'NCJE}+VM2(I)_VM2(I)}*WII}

VH2=VH2/{2.*WT*GO}

DAM=O.O

DO 943 I=I,NQII

94'3 DAM=DAM +WIII*IRBiI'Ji*VTBII'NQJE)-AMI{I)}/GO

DELH=O.O

PS=OMEGA*DAM

ANN=O.O

DO 944 I=I,NQII
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944

PHI=P(I,1)/RHOF
PH2=PII,NOJEI/RHOF

CH]=VIIII/I2.*GO}

CH2=(VTB(I,NQJE)*VTB(I,NQJEI+VM2II)*VM2(I)}/(2.*GO)
TLHI=CH2-CHI+PH2-PH1
DELH:DELI_+WII)*TLHI/WT

DAMI=RB(I,jI*IVTBII,NQJE)-AMI(1)

ALOSSIII=(OMFGA*DAMI-TLHI*GOIIIIWBII,II*WB(I,I))/2.)

ANNIII=TLHI_GO/IOMEGA*DAMI)

ANNOV=WT*DFLH/PS

PRINT IOII,(I,ALOSS(1),ANN(II,DELTAE(II,I=I,N3II}

PRINT 1012 ,DELH,PBI,PB2,VHI ,VH2,WT,DAM,PS

PRINT I0 ]3,ANNOV,CMEGA,RHOF,PSAT ,T ,CRN,FN,ANB

GO TO 99

END
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C

C

C

C

C

C
C

C

C

C

C
C

C

SUBROUTINE ANNIIL

SUBROUTINE FOR ANNULUS VELOCITY DIAGRAMS AND OTHER FLUID DATA

FOR GIVEN STREAMLINE.POSITIONS

DIMENSION Z(11,22) ,R{ 11,22} ,AN(] 1,22) tDHP(22)

COMMON AN,RR,ZZ,R,Z,TPP,TSStPBl,PB2,WBI,WB2'RHOBI'RHOB2'RHOF'PSAT'

1GO ,ANB tP IE ,AK2 ,T ,P,HP, J ,NQI ,NOJ _.V,FC ,pFR ,FSA ,SBF2 ,CBF2 ,TBP, TBS, TDB

2RB2 ,RVTI , ISTART ,AW,VBT2 ,OMEGA ,AC2,VBM2 tCNV

L=O
RHOB2=RHOF

AP=O,1

ATT=RHOF _-

ADP=O,I

48 VBM2=AW/(RHOB2*AC2*ANB)

WR2=VBM2/SBF2
VBT2=OMEGA*RB2-WB2*CBF2

WDR=(WBI+WB2)/2,

AK2=FSA*(RB2_VRT2-RVTI)

RHOB]2=(RHOB]+RHOB2)/2.

IF(V)I,I,4

I ALI2=0,O

GO TO 5

BEGIN LOSS CALCULATION

4 IF(WBI-WB2)6'6,7

7 AK=(I'-WB2/WBI)/(2"*(I'+WB2/WBI))

ALI2=FC_WDBWWDB+AK*(WBI_WBI-WB2 *WB2}

GO TO 5

6 AL12=FC *WDB*_!DB

5

55

8

12

9

COMPLETE LOSS CALC[JLATION

pB2=PB]+(RHOEI2/GO)*(FR-ALI2-,5*(WB2*WB2-WBI*WBI) )

IF (T)40,4(),55

PDB = (PB2+PB I )/2 •

AK3=AK2*WDB-AK2*AK2*TDB

IF(AK2 )8,9,10

[F (RHOF-RHOB2 )61,6 ] ,] 2

I_-(AP-O,OOI.) 9,9, ] 5

L=IOO

IF (PDB-PSAT) 16,17,17

ENTER TWO-PHASE FLOW ITERATION LOOP

16 RHODB=R HOF/(I"+TW(PSAT-pDB) )

GO TO 41

17 RHODB=RHOF

GO TO 41

!0 TBW=TDB-WDB/AK2

WS=WDB+AK 2 W (TBS-T DB )

IF(TBP-T_W)]9,2fl,20

19 WP=O.O
TBPP=TBW
GO TO 2]

2C, TBPP=TBP
WP=WDB-AK2* ( TDR-T BPP )

21 IFIPDB-PSAT)22,23,24

22 RHOTDB=RHOF/(1.+T W(PSAT-PDB} )
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WSAT2=WDB*WDB -(GO*RHOFIT)*II,IIRHOTDB*RHOTDB)-I,IIRHOF*RHOFII

lF (WSAT 2-WP*WP )25,25,26

26 WTBSAT=SQRTIWSAT2 1

29 TBSAT=TDB+IWTBSAT-WDBIIAK2 _

GO TO 27

214 WTBSAT=SQRT{ {2.*GO/RHOFi*IPDB-PSATI+WDB*WDBI

IF IWTBSAT-W£ 129,28,28 :

28 RHODR=RHOF

GO TO 4l '_

23 NN=I

XI=TDB

X2=TRS

AI=I2,*T/IGO*RHOFI I*(-AK3*TDB-,5*AK2*AK2*TDB *TDBI+I"/(RHOF*RHOF)

GO TO 31

27 NN=2

XI=TBSAT

X2=TBS
AI=(2.*TIIGO*RHOFI I*I-AK3*TBSAT--5*AK2*AK2*TRSAT*TBSATI+I"IIRHOF*R

IHOF I

GO TO 3!

25 NN=3

Xi =T-_PP

X2=TBS

AI=(2.*T/(GO*RHOFI }*I-AK3*TDB-.5*AK2*AK2*TDB*TDBI+I'/(RHOTDB*RHOTD

IB)
DD=SQRT(I./( {2._T/IGO*RHOF} }*(AK3*ITRPP-Tr)BI+.5*AK2*AK2*ITBPP*TR'PP

I-TDB*TDB} )+i. / IRHOTDB*RHOTDB I } }

31 B I=2.*T*AK3/{ GOI_RHOF 1

C ]=2,*T*AK2_AK2 / (GO*RHOF*2 • }

CAPXI = A I+RI.*X ] +C ]*X I*X 1

CAPX2=A ]+B],_X2+C I*X2*X2

CONSTI=I I./SQRTICI) I*ALOG(SQRT(CAPXII+XI*SQRTIC]I+BI/(2.*SQRT(C] ) )

1)
CONST2=II./SQRT(CI) )*ALOGISQRTICAPX2)+X2*SQRT(CII+B1/(2"*SQRT(CI) )

1)

GO TO 132,33,341,NN
32 AA=RHOF*(TDB-TBPP)+CONST2-CONST1

GO TO 30

33 AA=RHOF*(TBSAT-TBPP)+CONST2-CONST]

GO TO 30

34 AA=CONST2-C.ONST ]
35 IF (T_P-TBW)36,37,37

36 RHOP=DD
GO TO 38

30 IF(TRP-TBWI39,37,37

39 RHOP=RHOF
GO TO 38

37 RHOP=O°O

38 RHODB=RHOP*(TBPP-TBP)/(TBS-TBP}+AA/(TBS-TBP)

4] IFIABSI(RHODB-RHOB12)/RHOB121-O.COI)61.,61,42

42 IF (L-I00)43,44,44

44 CNV=O,

GO TO 40

43 I F ( RHODR-RHOP, 12 ) 45961 , 46

46 IF(L)61,61,15

45 I F (L) 70] 1,71"_1,702
70,1 TT=RHOB2

TTP=ATT
BTT=RHODB

ATT=RHOBt2
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7O2

711

707

50

ADP
GO
IF(
IF{
IF(
L=L
RHO
GO

=AP
TO 5o
AP-O.O01 )701,701,71 1

AP-ADP)701,707,707

RHOB12-RHODB-ATT+BTT}701,62,62

+l

B2=TT*(I.-AP)
TC 48

62 TT=2.WTTP-RHOB]

15 AP=AP/IO.
GO TO 5O

61CNV=I.
40 RETURN

END
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C

C

SUBROUTINE BLADE

SUBROUTINE FOR

DIMENSION Z(11,
COMMON AN,RR,ZZ

1GO,ANB,P I E ,AK2*

2RL_2,RVTI,ISTART

1,906 FORMATIBFIO.4)

1007 FORMAT(IP8ElS.7

GO TO (I,6,5,10

1 READ 1006,

ITF(3)

BLADE SURFACE COORDINATES TP AND TS FROM GIVEN R,Z

22),RIII,22),AN|II,22),DHP(22),T_(22)

,R,Z,TPP,TSS,PBI,PB2,WBI,WB2,RHOBI,RHOB2,RHOF,PSAT,

T,DHP,J,NOI,NQJ,V,FC,FR,FSA,SBF2,CBF2,TSP,TBS,TDB,

,AW,VBT2,0MEGA,AC2,VBM2,CNV

)

,8,11),ISTART

AA,BB,CC,DSEX,TIT,RIT,DTR,ANB,TF(]),TF(2),

PRINT IO07,AA,BB,CC,DSEX,TIT,RIT,DTR,ANB,TF(1),TF(2),

]TF(3)

IF (NQJ-4) 75,76,76

76 DO 2_ K=4,NQJ

23 TF(K)=I.

75 TPNB=2.*PIE/ANB

DO 24 K=I,NQJ

TTH=TF(K}_(T1T+DTR*(R1T-R(1,K) ) )

TTT=TF(K)*(TITt.DTR*(RIT-R(NQI,K)) )

DZf)T=AA+BB'wZ(NQI,K)+CC*Z(NQI,K)*Z(NQI,K)

ADHP=TPNBWDZDT

ADH=ADHP-TTT

BDH=ADHP-TTH

CDH=AN ( NO I ,K )

24 Dt4P (K) = ]. / ( 1. / (2, WCDH) +1. / (ADH+BDH) )
DO 27 K=2,NQJ

21 DHP(K) =(DHP(K-] )+DHP(K) )/2.
IF(CC)3,4,3

4 IF(BB)25,26,25

2,6 ISTART=2

GO TO 6

25 ISTART=3

GO TO 5

3 O=4.*AAwCC-BR*BR
IF(017,28,9

28 ISTART=5

GO TO 8

7 SO=SORT(-O)

RSO=] .ISO

BMSO=BB-SO

BPSQ=BB+SO

FBSO=BMSO/BPSQ
ISTART=4

GO TO 10
9 SO=SORT(O)

$02=2./SO

TQ=SQ2*ATAN ( RB/SQ )

ISTART =6

GO TO 11

6 TPP=-ZZIAA

RSBB=RR*S IN (ATAN (AA/RR ) }

GO TO 30

5 TPP=(-I./BB)*ALOG((AA+BB*ZZ)/AAI

RSBB=RR*S IN(ATAN((AA+BB*ZZ)/RR))
GO TO 30

10 TPP=-RSQ*ALOG( ((2._CCwZZ+BMSQ)I(2.*CCwZZ+BPSQ))IFBSQ)

31 RSBB=RR*SIN(ATAN( (AA*B_*ZZ+CC*ZZwZZ)/RR)}
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11

3O

GO TO 30
Tpp=(I./(BB+CC_ZZII-I./BB

GO TO 31
Tpp=-sQ2_(ATANII2._CC_ZZ+BB)/SQ)I+TQ
GO TO 31
TT=T1T+DTR_IR1T-RR)
TTF=TT_TFCJI
AJ=J-1
QQJ=NQJ-I

TDS=2._DSEX_IAJ/OQJ}
TSS=Tpp+TPNB-(TTF+TI)S)IRSBB

RETURN

END

}

t

i
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